Programming Project #1: Othello
CSE 473, Spring 2005

Due Monday, May 2

In this project you will implement and document an Othello-playing game agent. We will
give you starter code so that you dont have to worry about the non-Al overhead. At the
end of the assignment we will have an Othello tournament in which your agents play against
each other, with a prize for the winning team.

The Game

This version of Othello is a tiny bit different from the Othello you already know. The four
corner squares have been removed from the board. All of the rules, the initial configuration,
and the conditions for winning remain the same. You can see the rules for Othello at:

http://www.rainfall.com/othello/rules/othellorules.asp

and if you look around on the web you can find sites that allow you to play the original
version of the game (also called Reversi) against computers or other people.

Your Task

Your job is to implement an Othello-playing agent that plays as well as possible under various
time constraints. Your program needs to be able to accept arguments specifying whether it
is playing as black or as white, and also the amount of thinking time the program gets for
the game.

You will need to write a function that takes a current board state and the amount of thinking
time remaining, and makes a single move. This function will then return the state of the
board after the move is made.

The way in which you implement this function is up to you. However, there are some things
you need to do along the way:



1. Implement a straightforward minimax search agent. Choose an arbitrary (but
legal) game configuration with 4 moves (2 for each player) remaining. How long does
it take for minimax to do an exhaustive search of the remaining space? What if there
are 8 moves remaining? Or 167

2. Implement alpha-beta pruning in your minimax search agent. For the same
near-endgame configurations you used in 1), how do the search times compare now
that pruning is enabled?

Of course, during a real game with limited time it will not be possible for either your minimax
agent or your alpha-beta agent to do an exhaustive search, so you will have to use some of
the other techniques we discussed in class. Most notably, you will have to:

3. Develop and implement a set of heuristics that allow you to assign/evaluate
the utility of a midgame board. What characteristics make a board configuration
good? How can you formalize these characteristics into efficiently computable heuris-
tics?

4. Develop and implement a timing strategy. Since we know that each player takes
exactly 28 moves per game in our modified Othello, the simplest timing strategy is to
divide the available time by 28 and use a fixed amount of time per move. Of course,
there are some moves in a game that are more important than others and perhaps
youd like to spend more thought time on those.

Once these four basics are completed, there is a world of opportunity for further improvement
(and extra credit!). Some ideas include:

e Fancify your search depth choices. You can try adding a quiescence-based heuristic to
decide how deeply to search each branch of the game tree, for example.

e Use different sets of heuristics for the beginning, middle and end of the game.
e Create a library of opening moves, or endgame positions.

e ...ctc.

What To Deliver

After the assignment is turned in we will have a tournament in which we play your Othello
agents against each other. So, we will need a copy of your codeplease make sure you follow
the naming conventions given in starter code so that everyones programs can be called in the
same manner. Instructions on how to turn in your code will come out closer to the deadline.

In addition to your code, we will need a writeup explaining what it is that youve done. The
writeup should include the following:



A discussion of minimax as it pertains to our modified Othello. You can use the
questions in the project description section as a starting point.

e A discussion of alpha beta pruning in the context of our modified Othello. Again, you
can use the given questions as a springboard. How much advantage does pruning gain
us in this context?

e A detailed description of the heuristics you develop for board evaluation. What char-
acteristics did you consider important, and why? Is there anything that you considered
using but in the end did not? Why?

e A description of your timing strategy. Why did you choose this strategy?
e A description of anything beyond-the-basics that you did.

e A discussion of what, if anything, you might do differently if you had to start over, or
what you think would have been helpful to implement if youd had more time.

What We Provide

We provide Java code to represent the current state of an Othello game, as well as some
GUI code to play the game itself. The javadoc info for these classes is located at:

http://www.cs.washington.edu/473/homework/othello/docs/

What you'll first need to do is implement the Player interface. The main thing needed in this
class is to implement the makeMove method, which takes in an object of type OthelloState.
The OthelloState object records the state of the game, with its most important methods
being:

1. at: this will tell you what piece (if any) is at any position on the board.
2. makeMove: this makes the specified move.
3. forfeitMove: if there is no move to be made you must forfeit your move.

If an invalid move is made at any point during the game, the game will be ended, so you
should make sure your computer-player makes no errors. Each “piece” is represented using
an OthelloPiece object (either Black or White).

Once you're done making your player (or if you want to test it any point) you should flesh
out your main function. To play the game all you need to do is make a new object of type
OthelloGame with 0, 1, or 2 computer controlled players. Then, just call the play method
on this object.

If you have any questions about the underlying classes be sure to email Matt.



