Logical Agents using Propositional Logic

Chapter 7

Knowledge bases

- Knowledge base = set of sentences in a formal language; here, Propositional Logic
 - List of things the agent 'knows'
- Inference engine = processes this knowledge
- Declarative approach to building an agent (or other system):
 - Tell it what it needs to know
- Then it can Ask itself what to do answers should follow from the KB

A simple knowledge-based agent

```
function KB-AGENT( percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time
TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE( action, t))
t \leftarrow t + 1
return action
```

It observes the world (via percepts)
Makes an action based on percepts and knowledge
It remembers its action
Repeat

Example

KB: 1) [Goal is to enter room]

2) [If [Goal is to enter room] and [robot is in front of room] and [door is closed], then [open door]]

3) [If [Goal is to enter room] and [robot is in front of room] and [door is not closed], then [enter room]]

Percept: [[Robot is in front of door] and [door is closed]]

How is this different than search? CSP?

PL: Syntax & Semantics

- Syntax: Defines what a well-formed sentence is.
- Semantics: Defines the meaning of a sentence.

Entailment

- Entailment means that one thing follows from another: $KB \models \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
 - E.g., x+y = 4 entails 4 = x+y
 - Doesn't necessarily go the other way;

 $(P \land Q \models P)$ but it is not the case that $(P \models P \land Q)$

Inference

- $KB \models_i \alpha$ = sentence α can be derived from KB by procedure *i*
- Soundness: *i* is sound if whenever $KB \models_i \alpha$, it is also true that $KB \models \alpha$
 - Everything it derives is correct
- Completeness: *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$
 - It is capable of deriving anything that can be derived from KB
- A procedure that derives P from (P \wedge Q) is sound, but not complete

– Not applicable in handling P \land (P \Rightarrow Q), for instance

Inference Example

KB:

- 1) [Not summer]
- 2) [In Seattle]
- 3) [If [In Seattle] and [Not summer], then [It is raining]]

Ask: Is [It is raining] true?

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol E.g. P Q R false true false How many models are possible for n variables?

Rules for evaluating truth with respect to a model *m*:

$\neg S$	is true iff	S is false	
$S_1 \wedge S_2$	is true iff	S ₁ is true and	S_2 is true
$S_1 \vee S_2$	is true iff	S ₁ is true or	S_2^{-} is true
$S_1 \Rightarrow S_2$	is true iff	S ₁ is false or	S ₂ is true
i.e.,	is false iff	S ₁ is true and	S_2 is false
$S_1 \Leftrightarrow S_2$	$_{2}$ is true iff	$S_1 \Rightarrow S_2$ is true an	$dS_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P \land (Q \lor R) = true \land (true \lor false) = true \land true = true$

Validity and satisfiability

A sentence is valid if it is true in all models, e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if ($KB \Rightarrow \alpha$) is valid

A sentence is satisfiable if it is true in some model e.g., $A \lor B$, C

A sentence is unsatisfiable if it is true in no models e.g., A^-A

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable

What do each of these mean in terms of a truth table?

Inference, cont.

- So we'd like inference rules that are both sound and complete
 - Allow our agent to fully reason about its environment, given its knowledge
- None of the current rules is complete by itself
 - It'd really be nice to have a single rule that's both sound and complete...

Resolution: One inference to rule them all

Conjunctive Normal Form (CNF) conjunction of disjunctions of literals clauses E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

• Resolution inference rule (for CNF):

$$\frac{l_{i} \vee \ldots \vee l_{k}, \qquad \qquad m_{1} \vee \ldots \vee m_{n}}{l_{i} \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}}$$

where l_i and m_j are complementary literals.

E.g.,
$$\frac{P_{1,3} \vee P_{2,2}}{P_{1,3}}$$

 Resolution is sound and complete for propositional logic

Resolution

Soundness of resolution inference rule:

$$\neg (l_{i} \lor \ldots \lor l_{i-1} \lor l_{i+1} \lor \ldots \lor l_{k}) \Rightarrow l_{i}$$
$$\neg m_{j} \Rightarrow (m_{1} \lor \ldots \lor m_{j-1} \lor m_{j+1} \lor \ldots \lor m_{n})$$
$$\neg (l_{i} \lor \ldots \lor l_{i-1} \lor l_{i+1} \lor \ldots \lor l_{k}) \Rightarrow (m_{1} \lor \ldots \lor m_{j-1} \lor m_{j+1} \lor \ldots \lor m_{n})$$

We just have to get everything in CNF...

Conversion to CNF

 $\mathsf{B}_{1,1} \iff (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1})$

- $\begin{array}{ll} \text{1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow β with $(\alpha \Rightarrow β)$ \land $(\beta \Rightarrow α). \\ (B_{1,1} \Rightarrow $(P_{1,2} \lor P_{2,1})) \land $((P_{1,2} \lor P_{2,1}) \Rightarrow $B_{1,1})$ \end{array}$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move \neg inwards using de Morgan's rules and doublenegation: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Apply distributivity law (\land over \lor) and flatten: ($\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}$) \land ($\neg P_{1,2} \lor B_{1,1}$) \land ($\neg P_{2,1} \lor B_{1,1}$)

Resolution algorithm

• Proof by contradiction, i.e., show $KB_{\wedge}\neg\alpha$ unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false

clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha

new \leftarrow \{\}

loop do

for each C_i, C_j in clauses do

resolvents \leftarrow PL-RESOLVE(C_i, C_j)

if resolvents contains the empty clause then return true

new \leftarrow new \cup resolvents

if new \subseteq clauses then return false

clauses \leftarrow clauses \cup new
```

2 Termination cases:

- 1) No new clauses are added by resolution; KB does not entail α
- Two clauses resolve to the 'empty clause'; they cancel out. This happens when resolving a contradiction. KB does entail α.

Forward chaining

- Horn Form (restricted)
 - KB = conjunction of Horn clauses
 - Horn clause =
 - proposition symbol; or
 - (conjunction of symbols) \Rightarrow symbol
 - $\text{ E.g., } \mathsf{C} \land (\mathsf{B} \Rrightarrow \mathsf{A}) \land (\mathsf{C} \land \mathsf{D} \Rrightarrow \mathsf{B})$
 - All symbols here are not negated
- Modus Ponens (for Horn Form): complete for Horn KBs

$$\begin{array}{ccc} \alpha_1, \dots, \alpha_n, & \alpha_1 \wedge \dots \wedge \alpha_n \Longrightarrow \beta \\ & \beta \end{array}$$

- Can be used with forward chaining.
- These algorithms are very natural and run in linear time

Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB,
 - add its conclusion to the KB, until query is found

B

Forward chaining algorithm

```
function PL-FC-ENTAILS?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true
while agenda is not empty do
p \leftarrow \text{POP}(agenda)
unless inferred[p] do
inferred[p] \leftarrow true
for each Horn clause c in whose premise p appears do
decrement count[c]
if count[c] = 0 then do
if HEAD[c] = q then return true
PUSH(HEAD[c], agenda)
return false
```

 Forward chaining is sound and complete for Horn KB

Forward chaining example

