
Logical Agents using
Propositional Logic

Chapter 7

Knowledge bases

• Knowledge base = set of sentences in a formal
language; here, Propositional Logic
– List of things the agent ‘knows’

• Inference engine = processes this knowledge
• Declarative approach to building an agent (or other

system):
– Tell it what it needs to know�

• Then it can Ask itself what to do - answers should follow
from the KB

A simple knowledge-based agent

•It observes the world (via percepts)
•Makes an action based on percepts and knowledge
•It remembers its action
•Repeat

Example

KB: 1) [Goal is to enter room]
2) [If [Goal is to enter room] and [robot is in

front of room] and [door is closed], then [open
door]]

3) [If [Goal is to enter room] and [robot is in
front of room] and [door is not closed], then
[enter room]]

Percept: [[Robot is in front of door] and [door is
closed]]

How is this different than search?
CSP?

PL: Syntax & Semantics

• Syntax: Defines what a well-formed sentence
is.

• Semantics: Defines the meaning of a
sentence.

Me fail English?
That’s unpossible!

Entailment
• Entailment means that one thing follows from another:

KB ╞ α
• Knowledge base KB entails sentence α if and only if α is

true in all worlds where KB is true

– E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”�

– E.g., x+y = 4 entails 4 = x+y�
– Doesn’t necessarily go the other way;

(P ∧ Q ╞ P) but it is not the case that (P ╞ P ∧ Q)

Inference
• KB ├i α = sentence α can be derived from KB by

procedure i
• Soundness: i is sound if whenever KB ├i α, it is

also true that KB╞ α
– Everything it derives is correct

• Completeness: i is complete if whenever KB╞ α,
it is also true that KB ├i α
– It is capable of deriving anything that can be derived

from KB
• A procedure that derives P from (P ∧ Q) is

sound, but not complete
– Not applicable in handling P ∧(P ⇒Q), for instance

Inference Example

KB:
1) [Not summer]
2) [In Seattle]
3) [If [In Seattle] and [Not summer], then [It

is raining]]

Ask: Is [It is raining] true?

Propositional logic: Semantics
Each model specifies true/false for each proposition symbol

E.g. P Q R
false true false

How many models are possible for n variables?

Rules for evaluating truth with respect to a model m:
¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1is true or S2 is true
S1 ⇒ S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false
S1 ⇔ S2 is true iff S1⇒S2 is true andS2⇒S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

¬P ∧ (Q ∨ R) = true ∧ (true ∨ false) = true ∧ true = true

Validity and satisfiability
A sentence is valid if it is true in all models,

e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B�

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB ∧¬α) is unsatisfiable

What do each of these mean in terms of a truth table?

Inference, cont.

• So we’d like inference rules that are both
sound and complete
– Allow our agent to fully reason about its

environment, given its knowledge
• None of the current rules is complete by

itself
– It’d really be nice to have a single rule that’s

both sound and complete…

Resolution: One inference to rule
them all

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where li and mj are complementary literals.
E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

• Resolution is sound and complete
for propositional logic

Resolution

Soundness of resolution inference rule:

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ li
¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

We just have to get everything in CNF…

Conversion to CNF
B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:�
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∧ over ∨) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

Resolution algorithm
• Proof by contradiction, i.e., show KB∧¬α unsatisfiable

2 Termination cases:
1) No new clauses are added by resolution; KB does not entail α
2) Two clauses resolve to the ‘empty clause’; they cancel out.

This happens when resolving a contradiction. KB does entail α.

Forward chaining
• Horn Form (restricted)

– KB = conjunction of Horn clauses
– Horn clause =

• proposition symbol; or
• (conjunction of symbols) ⇒ symbol

– E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)
– All symbols here are not negated

• Modus Ponens (for Horn Form): complete for Horn KBs
α1, … ,αn, α1 ∧ … ∧ αn ⇒ β

β

• Can be used with forward chaining.
• These algorithms are very natural and run in linear time

Forward chaining
• Idea: fire any rule whose premises are satisfied in the

KB,
– add its conclusion to the KB, until query is found

Forward chaining algorithm

• Forward chaining is sound and complete for
Horn KB

Forward chaining example

	Logical Agents using Propositional Logic
	Knowledge bases
	A simple knowledge-based agent
	Example
	How is this different than search? CSP?
	PL: Syntax & Semantics
	Entailment
	Inference
	Inference Example
	Propositional logic: Semantics
	Validity and satisfiability
	Inference, cont.
	Resolution: One inference to rule them all
	Resolution
	Conversion to CNF
	Resolution algorithm
	Forward chaining
	Forward chaining
	Forward chaining algorithm
	Forward chaining example

