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Knowledge bases

• Knowledge base = set of sentences in a formal
language; here, Propositional Logic
– List of things the agent ‘knows’

• Inference engine = processes this knowledge
• Declarative approach to building an agent (or other 

system):
– Tell it what it needs to know�

• Then it can Ask itself what to do - answers should follow 
from the KB



A simple knowledge-based agent

•It observes the world (via percepts)
•Makes an action based on percepts and knowledge
•It remembers its action
•Repeat



Example

KB: 1) [Goal is to enter room]
2) [If [Goal is to enter room] and [robot is in 

front of room] and [door is closed], then [open 
door]]

3) [If [Goal is to enter room] and [robot is in 
front of room] and [door is not closed], then 
[enter room]]

Percept:  [[Robot is in front of door] and [door is 
closed]]



How is this different than search?  
CSP?



PL:  Syntax & Semantics

• Syntax:  Defines what a well-formed sentence 
is.

• Semantics:  Defines the meaning of a 
sentence.

Me fail English?  
That’s unpossible!



Entailment
• Entailment means that one thing follows from another:

KB ╞ α
• Knowledge base KB entails sentence α if and only if α is 

true in all worlds where KB is true

– E.g., the KB containing “the Giants won” and “the Reds won” 
entails “Either the Giants won or the Reds won”�

– E.g., x+y = 4 entails  4 = x+y�
– Doesn’t necessarily go the other way; 

(P ∧ Q ╞ P) but it is not the case that (P ╞ P ∧ Q)



Inference
• KB ├i α = sentence α can be derived from KB by 

procedure i
• Soundness: i is sound if whenever KB ├i α, it is 

also true that KB╞ α
– Everything it derives is correct

• Completeness: i is complete if whenever KB╞ α, 
it is also true that KB ├i α 
– It is capable of deriving anything that can be derived 

from KB
• A procedure that derives P from (P ∧ Q) is 

sound, but not complete
– Not applicable in handling P ∧(P ⇒Q), for instance



Inference Example

KB:  
1) [Not summer]
2)  [In Seattle]
3)  [If [In Seattle] and [Not summer], then [It 

is raining]]

Ask:  Is [It is raining] true?



Propositional logic: Semantics
Each model specifies true/false for each proposition symbol

E.g. P Q R
false true false

How many models are possible for n variables?

Rules for evaluating truth with respect to a model m:
¬S is true iff S is false  
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1is true or S2 is true
S1 ⇒ S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false
S1 ⇔ S2 is true iff S1⇒S2 is true andS2⇒S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

¬P ∧ (Q ∨ R) = true ∧ (true ∨ false) =  true ∧ true = true



Validity and satisfiability
A sentence is valid if it is true in all models,

e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B�

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB ∧¬α) is unsatisfiable

What do each of these mean in terms of a truth table?



Inference, cont.

• So we’d like inference rules that are both 
sound and complete
– Allow our agent to fully reason about its 

environment, given its knowledge
• None of the current rules is complete by 

itself
– It’d really be nice to have a single rule that’s 

both sound and complete…



Resolution: One inference to rule 
them all

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where li and mj are complementary literals. 
E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

• Resolution is sound and complete 
for propositional logic



Resolution

Soundness of resolution inference rule: 

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ li
¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

We just have to get everything in CNF…



Conversion to CNF
B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:�
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∧ over ∨) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)



Resolution algorithm
• Proof by contradiction, i.e., show KB∧¬α unsatisfiable

2 Termination cases:
1) No new clauses are added by resolution; KB does not entail α
2) Two clauses resolve to the ‘empty clause’; they cancel out.  

This happens when resolving a contradiction. KB does entail α.



Forward chaining
• Horn Form (restricted)

– KB = conjunction of Horn clauses
– Horn clause = 

• proposition symbol;  or
• (conjunction of symbols) ⇒ symbol

– E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)
– All symbols here are not negated

• Modus Ponens (for Horn Form): complete for Horn KBs
α1, … ,αn, α1 ∧ … ∧ αn ⇒ β

β

• Can be used with forward chaining.
• These algorithms are very natural and run in linear time



Forward chaining
• Idea: fire any rule whose premises are satisfied in the 

KB,
– add its conclusion to the KB, until query is found



Forward chaining algorithm

• Forward chaining is sound and complete for 
Horn KB



Forward chaining example
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