Logical Agents using
Propositional Logic

Chapter 7

Knowledge bases

Inference engine -g——— domain-independent algorithms

Knowledge base -—— pomain-specific content

Knowledge base = set of sentences in a formal
language; here, Propositional Logic

— List of things the agent ‘knows’

Inference engine = processes this knowledge

Declarative approach to building an agent (or other
system):

— Tell it what it needs to know[

Then it can Ask itself what to do - answers should follow
from the KB

A simple knowledge-based agent

function KB- AGENT(percept) returns an action
static: KB, a knowledge base
t. a counter, initially 0, indicating time

TELL(KB, MAKE- PERCEPT-SENTENCE(percept, t))
action < ASK(KB, MAKE-ACTION-(QUERY(1))
TELL(KB, MAKE- ACTION-SENTENCE(action, t))

t—t+1
return action

It observes the world (via percepts)
Makes an action based on percepts and knowledge

It remembers its action
*Repeat

Example

KB: 1) [Goal is to enter room]

2) [If [Goal is to enter room] and [robot is in

front of room] and [door is closed], then [open
door]]

3) [If [Goal is to enter room] and [robot is in

front of room] and [door is not closed], then
[enter room]]

Percept: [[Robot is in front of door] and [door is
closed]]

How is this different than search?
CSP?

PL: Syntax & Semantics

« Syntax: Defines what a well-formed sentence
IS.

« Semantics: Defines the meaning of a
sentence.

Me fail English?
That’'s unpossible!

Entailment

« Entailment means that one thing follows from another:
KB Fa
 Knowledge base KB entails sentence a if and only if a is
true in all worlds where KB is true

— E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”[’]

— E.g., xty =4 entails 4 = x+y[_
— Doesn’t necessarily go the other way;

(P A Q EP) butitis not the case that (P FP A Q)

Inference

KB | a = sentence a can be derived from KB by
procedure |

Soundness: i is sound if whenever KB | q, it is
also true that KB F a

— Everything it derives is correct

Completeness: I is complete if whenever KB |= a,
it is also true that KB | a

— It is capable of deriving anything that can be derived
from KB

A procedure that derives P from (P A Q) is
sound, but not complete

— Not applicable in handling P A(P =Q), for instance

Inference Example

KB:

1) [Not summer]
2) [In Seattle]
)

3) [If [In Seattle] and [Not summer], then [It
IS raining]]

Ask: Is [t is raining] true?

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol
Eg. P Q R
false true false

How many models are possible for n variables?

Rules for evaluating truth with respect to a model m:

—S is true iff S is false

S, AS, istrue iff S, is true and S, is true
S,vS, istrue iff S,is true or S, is true

S, =S, is true iff S, is false or S, is true

.e., is false iff S, is true and S, is false

S, & S, is true iff S,=S, is true andS,=3S; is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

—P A (Qv R) =true A (true v false) = true A true = true

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, Av—-A, A=A, (AA(A=B))=BC

Validity is connected to inference via the Deduction Theorem:
KB E aif and only if (KB = a) is valid

A sentence is satisfiable if it is true in some model
eg.,AvB, C

A sentence is unsatisfiable if it is true in no models
e.g., AA—A

Satisfiability is connected to inference via the following:
KB |=0(if and only if (KB A—Q) is unsatisfiable

What do each of these mean in terms of a truth table?

Inference, cont.

« So we'd like inference rules that are both
sound and complete

— Allow our agent to fully reason about its
environment, given its knowledge

* None of the current rules is complete by
itself

— It'd really be nice to have a single rule that's
both sound and complete...

Resolution: One inference to rule
them all

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals
clauses
E.g.,(Av—-B)A(Bv-Cv-D)

« Resolution inference rule (for CNF):

k... v ok, my\V ...V m,
[N oV Eg VgV VN Y N g Mg Ve Vg

where [and m are complementary literals.
E.g., P1’3 V P2’2, ﬁPZ,z
I:)1,3

» Resolution is sound and complete
for propositional logic

Resolution

Soundness of resolution inference rule:

(v ooV by VgV v)=

il CORVANSRVE PRV PRVARAVE N

(v ooV EgvE v vE)=D (m vV MgV Mg Ve V m,)

We just have to get everything in CNF...

Conversion to CNF

B, & (P1,2 4 P2,1)

1. Eliminate <, replacing a < 3 with (a = B)A(B = a).
Bi1=> (Piav Py) A((PiavPyy) = Byy)

2. Eliminate =, replacing a = with —av f3.
(—'B1,1 v P1,2 v P2,1) A (—'(P1,2 v P2,1) 4 B1,1)

3. Move — inwards using de Morgan's rules and double-
negation: [
(B 1V P2V Py) A (=P oA =Py 4) v Byy)

4. Apply distributivity law (A over v) and flatten:
(—B11 VPV Py) APV By) A (=P v By)

Resolution algorithm

* Proof by contradiction, i.e., show KBA—a unsatisfiable

function PL-RESOLUTION(KB, a) returns true or false

clauses + the set of clauses in the CNF representation of KB N —«
new+{ }
loop do
for each Cj, C; in clauses do
resolvents «+ PL-RESOLVE(C;, C5)
if resolvents contains the empty clause then return true
new «— new | resolvents
if new C clauses then return false
clauses + clauses U new

2 Termination cases:

1) No new clauses are added by resolution; KB does not entail a

2) Two clauses resolve to the ‘empty clause’; they cancel out.
This happens when resolving a contradiction. KB does entail a.

Forward chaining

Horn Form (restricted)
— KB = conjunction of Horn clauses
— Horn clause =
e proposition symbol; or
 (conjunction of symbols) = symbol
— Eg,.CA(B=A)A(CAD=B)
— All symbols here are not negated
Modus Ponens (for Horn Form): complete for Horn KBs
(o PRI o i QA ...A"0, =P

&

Can be used with forward chaining.
These algorithms are very natural and run in linear time

Forward chaining

 ldea: fire any rule whose premises are satisfied in the
KB,

— add its conclusion to the KB, until query is found

)
P = @

LANM = P P
BAL = M }:}\
AANP = L M
AANB = L

A

B /

Forward chaining algorithm

function PL-FC-ENTAILS?(KB, ¢) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+ Pop(agenda)
unless inferred[p| do
inferred|p| < true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|[c] = 0 then do
if HEAD|¢| = ¢ then return true
Pusn(HEAD|c], agenda)
return false

« Forward chaining is sound and complete for
Horn KB

Forward chaining example

	Logical Agents using Propositional Logic
	Knowledge bases
	A simple knowledge-based agent
	Example
	How is this different than search? CSP?
	PL: Syntax & Semantics
	Entailment
	Inference
	Inference Example
	Propositional logic: Semantics
	Validity and satisfiability
	Inference, cont.
	Resolution: One inference to rule them all
	Resolution
	Conversion to CNF
	Resolution algorithm
	Forward chaining
	Forward chaining
	Forward chaining algorithm
	Forward chaining example

