
Probabilistic Reasoning

(Mostly using Bayesian Networks)



Introduction: Why probabilistic 
reasoning?

• The world is not deterministic. (Usually 
because information is limited.)

• Ways of coping with uncertainty include 
default logic, fuzzy logic, and probability 
theory.

• Probability theory is well-studied, well-
defined, well-supported.

• Also, systems based on it seem to work in 
practice.



Outline

• A running example
• Review of probability
• A naïve approach to probabilistic 

inference
• Bayesian networks!



An Example: The Burglar 
Alarm Domain

Imagine you live in a nice house in Los Angeles. 
While you’re at work, your neighbor John calls to say
your burglar alarm is ringing, but neighbor Mary 
doesn't call. Sometimes the alarm is set off by minor 
earthquakes. Is there a burglar?

Uncertainty clearly occurs here. Let us handle it using 
probability theory…



Review of Probability
• A random variable is just a variable. Can be boolean (e.g., 

Earthquake ∈ [t, f]), range over a discrete set of values (e.g., 
Earthquake ∈ [none, moderate, severe]), or range over integers 
or reals (e.g., over the Richter scale).

• A sample space is a set Ω of possible configurations of the 
world, where each configuration contains different values for the 
random variables. (E.g., Earthquake=t, Burglar=f, Alarm=t.)

• An event is any subset of Ω, and can be described using a 
proposition. (E.g., Earthquake=t ∨ Burglar=f.)

• A probability model assigns a probability P(ω) to each ω∈Ω
(and so to each possible event.)



Axioms of probability
For all propositions A, B�
• 0 ≤ P(A) ≤ 1
• P(true) = 1 and P(false) = 0
• P(A ∪ B) = P(A) + P(B) - P(A ∪ B)�

• They imply that Σ P(ω) = 1.0.
• (If a distribution doesn’t follow them, it is ill-defined.)



The Burglar Alarm domain

Here is a well-defined joint probability distribution for part of the 
example domain:

It can be used to answer any question about these three variables.

Earthquake ¬Earthquake

Burglar ¬Burglar Burglar ¬Burglar

Alarm 0.0000019 0.00057942 0.00093812 0.000997002

¬Alarm 0.0000001 0.00141858 0.00005988 0.996005000



“Inference by enumeration”

Inferring the probability of simple propositions, no evidence:

For any proposition, sum up the entries where it is true.
P(earthquake) = 0.002

Earthquake ¬Earthquake

Burglar ¬Burglar Burglar ¬Burglar

Alarm 0.0000019 0.00057942 0.00093812 0.000997002

¬Alarm 0.0000001 0.00141858 0.00005988 0.996005000



Prior/Posterior probabilities
• Probabilities relate propositions to agent's own state of 

knowledge, and change with new evidence:
P(alarm) = 0.002516442
P(alarm|earthquake) = 0.29

So, these are not assertions about the world.

• The probability of a proposition before the arrival of any 
evidence is a prior or unconditional probability.

• The probability of a proposition given some evidence is a 
posterior or conditional probability.
But what does ‘given some evidence’ mean, mathematically?



Conditional Probability
• Definition of conditional probability:�

P(a | b) = P(a ∧ b) / P(b) if  P(b) > 0�

• Product rule gives an alternative formulation:�
P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)�

• A general version holds for whole distributions, e.g.,�
P(Earthquake, Alarm) = P(Alarm | Earthquake) P(Earthquake)

(View as a set of 4 × 2 equations, not matrix multiplication.)�

• Chain rule is derived by successive application of product rule:�
P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)
= …
= πi= 1^n P(Xi | X1, … ,Xi-1)�



Inference by enumeration, cont.

For any proposition, sum the entries where it is true.

P(alarm|earthquake) = 
P(alarm,earthquake)/P(earthquake)

= 0.00058132/0.002 = 0.29

Earthquake ¬Earthquake

Burglar ¬Burglar Burglar ¬Burglar

Alarm 0.0000019 0.00057942 0.00093812 0.000997002

¬Alarm 0.0000001 0.00141858 0.00005988 0.996005000



Inference, generalized
Typically, we are interested in the posterior joint distribution of the 

query variables Y given specific values e for the evidence 
variables E�

Let the hidden variables be H = X - Y - E�

Then the required summation of joint entries is done by summing 
out the hidden variables:�

P(Y | E = e) = P(Y,E = e) / P(E = e) ∝ ΣP(Y,E= e, H = h)�

(The terms in the summation are joint entries because Y, E and 
H together exhaust the set of random variables�)



Problems

Obvious problems with doing inference by summing over the 
joint:�

1. Space complexity to store the joint distribution is O(dn),
where d is the largest arity.

2. Worst-case time complexity is O(dn).
3. How to find the numbers for O(dn) entries?

(Learning is easier when parameters are few.)

We want to make use of regularities in the domain to express 
that large table more compactly…



Independence
A and B are independent iff

P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)�

E.g., P(Earthquake, Burglar) = P(Earthquake)P(Burglar)

So, instead of a table with three entries, we could have two tables 
with just one entry each.

Wouldn’t it be nice if we could factor the whole joint like this?
But absolute independence is rare…



Independence, cont

Conditional independence occurs when two variables are independent given 
another variable.
E.g. If John and Mary do not communicate when deciding to call you about your 
alarm, then MaryCalls and JohnCalls are conditionally independent given Alarm.

P(MaryCalls ,JohnCalls | Alarm) =
P(MaryCalls | Alarm) P(JohnCalls | Alarm)

Taking all the independencies into account, we can rewrite the full joint as a product 
of smaller terms:
P(MaryCalls, JohnCalls, Alarm, Earthquake, Burglar) =

P(MaryCalls | Alarm) P(JohnCalls | Alarm) P(Alarm |Earthquake, 
Burglar) P(Earthquake)P(Burglar)

The full joint would have needed 31 entries. How many does this factorization need?



Bayesian networks
• Independence lets us express a joint compactly as a 

product of conditional distributions.
• This product can be represented using a directed, 

acyclic graph where:
– Graph nodes represent probabilistic variables
– Graph edges represent "direct influences"
– Each node Xi has an associated conditional distribution:

P (Xi | Parents (Xi))
(In the simplest case, these will be represented as conditional 

probability tables, or CPTs.)
• Such graphs are known as Bayesian networks or 

belief networks (BNs.) They are a type of graphical 
model.



An example BN



An Example BN, cont.
• Topology of network encodes conditional independence 

assertions:

• JohnCalls and MaryCalls are conditionally independent given 
Alarm.

• Burglar and Earthquake are independent a priori, but dependent 
given Alarm. (This is known as 'explaining away.')



Local semantics
General local semantics:

Each node is conditionally independent of its nondescendants given its 
parents.

Each node is conditionally independent of the rest of the network given its 
Markov blanket: its parents, its children, and its children’s parents.

(These concepts play a large role during inference.)



Global Semantics
The full joint distribution is defined as the product of the local 

conditional distributions:�
P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))�

As we said, P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)�
= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e)�

�

n



Interpreting Bayesian 
networks

• We constructed our burglar alarm network by thinking about the 
inter-variable dependencies.

• The links seem to reflect causal relationships.
• One of the advantages of Bayesian networks is that they can 

make sense in this way. This makes them easier for domain 
experts to construct, or interpret.
(Not all types of graphical models share this appealing feature!)

• Nevertheless, here is an all-purpose algorithm for constructing a 
Bayesian network by reasoning about dependencies.



Constructing Bayesian 
networks

• 1. Choose an ordering of variables X1, … ,Xn
• 2. For i = 1 to n

– add Xi to the network�
– select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:�
P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1)�(chain rule)

= πi =1P (Xi | Parents(Xi))�(by construction)
n

n



Example
• Suppose we choose the ordering M, J, A, B, E�

P(J | M) = P(J)?�



Example
• Suppose we choose the ordering M, J, A, B, E�

P(J | M) = P(J)?�No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?



Example
• Suppose we choose the ordering M, J, A, B, E�

P(J | M) = P(J)?�No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? 
P(B | A, J, M) = P(B)?



Example
• Suppose we choose the ordering M, J, A, B, E�

P(J | M) = P(J)?�No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)?
P(E | B, A, J, M) = P(E | A, B)?



Example
• Suppose we choose the ordering M, J, A, B, E�

P(J | M) = P(J)?�No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)? No
P(E | B, A, J, M) = P(E | A, B)? Yes



Example contd.

• Deciding conditional independence in noncausal directions�is hard
• (Causal models and conditional independence seem hardwired for 

humans!)�
• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed�



Compact conditional 
distributions

• CPTs grow exponentially with the number of parents
• CPTs become infinite with continuous-valued parents or 

children.
• Solution: use not tables, but canonical distributions, 

such as:
– Deterministic functions
– Probabilistic density functions, like Gaussians
– Functions like Noisy-OR. (For discrete parents Y1 …

Yn with independent failure probabilities qi,
P(X|Y1 … Yj, Yj+1 … Yn) = 1 - Πi=1 qi.)

Could also encode context-specific independence
using rules or trees.



BNs in Action: Driving a Car

An example of a Dynamic Bayesian Network (DBN.)



Relational BNs
• In logic, first-order representations:

– Can encode things more compactly than propositional ones. (E.g.,
rules of chess.)

– Are applicable in new situations, where the set of objects is 
different.

• We want to do the same thing with probabilistic representations
• A general approach: defining network fragments that quantify 

over objects and putting them together once the set of objects is 
known.
In the burglar alarm example, we might quantify over people, 
their alarms, and their neighbours.

• One specific approach: Relational Probabilistic Models
(RPMs.)



BNs in action: Relational BNs

A relational system for reasoning about papers and citations (as 
done by Citeseer.) The underlying set of papers is uncertain!



Summary

• Probability is a rigorous formalism for 
uncertain knowledge

• Joint probability distributions allow us to
answer all queries by summing over possible 
worlds, �but are impractical in nontrivial 
domains.

• Bayesian networks provide a compact 
representation of joint distributions

• …and a natural representation for (causally 
induced) conditional independence



Generative Models
• The models we have looked at today are all 

examples of generative models.
They define a full distribution over everything in the 
domain, so possible worlds can be generated from 
them.
Generative models can answer any query.

• An alternative is discriminative models.
There, the query and evidence are decided upon in 
advance and only the conditional distribution P(Q|E) 
is learnt.

• Which type is “better”? Current opinion is divided.



A Leading Question

• Bayesian networks help us represent 
things compactly… but how can that 
translate into better inference 
algorithms?

• How would you do inference using a 
Bayes net?
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