
Kernel Machines 
• A relatively new learning methodology (1992) derived 

from statistical learning theory.

• Became famous when it gave accuracy comparable to 
neural nets in a handwriting recognition class.

• Was introduced to computer vision researchers by 
Tomaso Poggio at MIT who started using it for face 
detection and got better results than neural nets.

• Has become very popular and widely used with 
packages available.
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Support Vector Machines (SVM)
• Support vector machines are learning algorithms 

that try to find a hyperplane that separates 
the different classes of data the most.

• They are a specific kind of kernel machines based on 
two key ideas:

• maximum margin hyperplanes 

• a kernel ‘trick’
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Maximal Margin (2 class problem)

Find the hyperplane with maximal margin for all
the points. This originates an optimization problem
which has a unique solution. 3
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Support Vectors
• The weights αi associated with data points are 

zero, except for those points closest to the 
separator.

• The points with nonzero weights are called the 
support vectors (because they hold up the 
separating plane).

• Because there are many fewer support vectors 
than total data points, the number of parameters 
defining the optimal separator is small.
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The Kernel Trick

The SVM algorithm implicitly maps the original
data to a feature space of possibly infinite dimension
in which data (which is not separable in the
original  space) becomes separable in the feature space.
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A Few Details
• Consider the expression being maximized.

• In order to find linear separators in a high-
dimensional space F(x), we can replace
xi • xj with F(xi) • F(xj).

• Most important, F(xi) • F(xj) can often be 
computed without first computing F for each 
point.

∑αi – ½ ∑αi αj yi yj (xi • xj)
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Example from Text

True decision boundary
is  x1

2 + x2
2 < 1 .

• Mapping the data to the 3D space defined by
f1 = x1

2,        f2 = x2
2,       f3 = 21/2 x1 x2

makes it linearly separable by a plane in 3D.

• For this problem F(xi) • F(xj) is just (xi • xj)2,

which is called a kernel function. 10



Kernel Functions

• The kernel function is designed by the 
developer of the SVM.

• It is applied to pairs of input data to 
evaluate dot products in some 
corresponding feature space.

• Kernels can be all sorts of functions 
including polynomials and exponentials.
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Kernel Function used in our 3D 
Computer Vision Work

12

• k(A,B) = exp(-θ2
AB/σ2)

• A and B are shape descriptors 
(big vectors).

• θ is the angle between these 
vectors. 

• σ2 is the “width” of the kernel.



Unsupervised Learning

• Find patterns in the data.
• Group the data into clusters.
• Many clustering algorithms.

– K means clustering
– EM clustering
– Graph-Theoretic Clustering
– Clustering by Graph Cuts
– etc
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Clustering by K-means Algorithm
Form K-means clusters from a set of n-dimensional feature vectors

1. Set ic (iteration count) to 1

2. Choose randomly a set of K means m1(1), …, mK(1).

3. For each vector xi, compute D(xi,mk(ic)), k=1,…K
and assign xi to the cluster Cj with nearest mean.

4.  Increment ic by 1, update the means to get m1(ic),…,mK(ic).

5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic+1) for all k.
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K-Means Classifier
(shown on RGB color data)

Classification Results
x1→C(x1)
x2→C(x2)

…
xi→C(xi)

…

x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…

Classifier
(K-Means)

Cluster Parameters
m1 for C1
m2 for C2

…
mk for Ck

original data
one RGB per pixel

color clusters 15



K-Means Classifier (Cont.)

Input (Known) Output (Unknown)
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x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…

Classification Results
x1→C(x1)
x2→C(x2)

…
xi→C(xi)

…

Cluster Parameters
m1 for C1
m2 for C2

…
mk for Ck



K-Means → EM
The clusters are usually Gaussian distributions.
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• Boot Step:
– Initialize K clusters: C1, …, CK

• Iteration Step:
– Estimate the cluster of each datum

– Re-estimate the cluster parameters

(µj, Σj) and P(Cj) for each cluster j.  

)|( ij xCp

)(),,( jjj CpΣµ For each cluster j

Expectation

Maximization

The resultant set of clusters is called a mixture model;
if the distributions are Gaussian, it’s a Gaussian mixture.



EM Classifier

Classification Results
p(C1|x1)
p(Cj|x2)

…
p(Cj|xi)

…

x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…

Classifier
(EM)

Cluster Parameters
(µ1,Σ1),p(C1) for C1
(µ2,Σ2),p(C2) for C2

…
(µk,Σk),p(Ck) for Ck
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EM Classifier (Cont.)

Input (Known) Output (Unknown)
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Cluster Parameters
(µ1,Σ1), p(C1) for C1
(µ2,Σ2), p(C2) for C2

…
(µk,Σk), p(Ck) for Ck

Classification Results
p(C1|x1)
p(Cj|x2)

…
p(Cj|xi)

…

x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…



Expectation Step

Input (Known) Input (Estimation) Output
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Cluster Parameters
(µ1,Σ1), p(C1) for C1
(µ2,Σ2), p(C2) for C2

…
(µk,Σk), p(Ck) for Ck

Classification Results
p(C1|x1)
p(Cj|x2)

…
p(Cj|xi)

…

x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…
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Maximization Step

Input (Known) Input (Estimation) Output
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Classification Results
p(C1|x1)
p(Cj|x2)

…
p(Cj|xi)

…

Cluster Parameters
(µ1,Σ1), p(C1) for C1
(µ2,Σ2), p(C2) for C2

…
(µk,Σk), p(Ck) for Ck

x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…
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EM Algorithm Summary

• Boot Step:
– Initialize K clusters: C1, …, CK

• Iteration Step:
– Expectation Step

– Maximization Step

(µj, Σj) and P(Cj) for each cluster j.  
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EM Clustering using color and 
texture information at each pixel

(from Blobworld)
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EM for Classification of Images in 
Terms of their Color Regions

Initial Model for “trees” Final Model for “trees”

Final Model for “sky”

EM

Initial Model for “sky”
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Sample Results

cheetah
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Sample Results (Cont.)

grass

26



Sample Results (Cont.)

lion
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