Machine Learning IV
Ensembles

CSE 473

Machine Learning Outline

- Machine learning:
- Supervised learning
- Overfitting
- Ensembles of classifiers
 Bagging
 Cross-validated committees
 Boosting
 Stacking

Ensembles of Classifiers

- Assume
 Errors are independent
 Majority vote
- Probability that majority is wrong...
 = area under binomial distribution
 If individual area is 0.3
 Area under curve for ≥11 wrong is 0.026
 Order of magnitude improvement!

Constructing Ensembles

Bagging

- Generate k sets of training examples
- For each set
 Draw m examples randomly (with replacement)
 From the original set of m examples
- Each training set corresponds to
 63.2% of original
 (+ duplicates)
- Now train classifier on each set

Voting

Cross-validated committees

- Partition examples into k disjoint equiv classes
- Now create k training sets
 Each set is union of all equiv classes except one
 So each set has (k-1)/k of the original training data
- Now train a classifier on each set

Ensemble Construction II
Ensemble Construction II

Cross-validated committees

- Partition examples into k disjoint equiv classes
- Now create k training sets

 Each set is union of all equiv classes **except one**

 So each set has $(k-1)/k$ of the original training data

- Now train a classifier on each set

Ensemble Creation III

Boosting

- Maintain prob distribution over set of training ex
- Create k sets of training data iteratively:
 - On iteration i

 Draw m examples randomly (like bagging)

 But use probability distribution to bias selection

 Train classifier number i on this training set

 Test partial ensemble (of i classifiers) on all training exs

 Modify distribution: increase P of each error ex

- Create harder and harder learning problems...

 "Bagging with optimized choice of examples"

Ensemble Creation IV

Stacking

- Train several base learners
- Next train meta-learner

 Learns when base learners are right / wrong

 Now meta learner arbitrates

 Train using cross validated committees

 - Meta-L inputs = base learner predictions

 - Training examples = 'test set' from cross validation