Machine Learning III Decision Tree Induction

CSE 473

Machine Learning Outline

- Machine learning:
 - √ Function approximation
 - J Bias
- Supervised learning
 - √ Classifiers & concept learning
 - √ Version Spaces (restriction bias)
 Decision-trees induction (pref bias)
- · Overfitting
- Ensembles of classifiers

© Daniel S, Weld

Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
 Version space algorithm over conjunctions.
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.

Decision trees.

Decision Trees

- Convenient Representation
 Developed with learning in mind
 Deterministic
- Expressive

Equivalent to propositional DNF Handles discrete and continuous parameters

· Simple learning algorithm

Handles noise well Classify as follows

- · Constructive (build DT by adding nodes)
- · Eager
- · Batch (but incremental versions exist)

Concept Learning

- E.g. Learn concept "Edible mushroom" Target Function has two values: T or F
- Represent concepts as decision trees
- · Use hill climbing search
- Thru space of decision trees

Start with simple concept

Refine it into a complex concept as needed

Experience: "Good day for tennis"

Day Outlook		Temp	Humid	Wind	PlayTennis?
d1	S	h	h	W	n
d2	S	h	h	S	n
d3	o	h	h	W	y
d4	r	m	h	W	y
d5	r	c	n	W	y
d6	r	c	n	S	y
d7	o	c	n	S	y
d8	S	m	h	W	n
d9	S	c	n	W	y
d10	r	m	n	W	y
d11	S	m	n	S	y
d12	o	m	h	S	y
d13	o	h	n	W	y
d14	r	m	h	S	n

Decision Tree Representation

Decision tree is equivalent to logic in disjunctive normal form G-Day \Leftrightarrow (Sunny \land Normal) \lor Overcast \lor (Rain \land Weak)

© Daniel S. Weld

Decision Tree Hypothesis Space

If the features are continuous, internal nodes may test the value of a feature against a threshold

Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

Decision Trees Provide Variable-Size Hypothesis Space

As the number of nodes (or depth) of tree increases, the hypothesis space grows

- \bullet \mathbf{depth} 1 ("decision stump") can represent any boolean function of one feature.
- depth 2 Any boolean function of two features; some boolean functions involving three features (e.g., $(x_1 \land x_2) \lor (\neg x_1 \land \neg x_3)$
- etc.

DT Learning as Search

· Nodes

Decision Trees

Operators

Tree Refinement: Sprouting the tree

Initial node

Smallest tree possible: a single leaf

Heuristic?

Information Gain

· Goal?

Best tree possible (???)

What is the Simplest Tree?

How good?

Means:
correct on 10 examples
incorrect on 4 examples

Successors Yes Humid Wind Temp Outlook Which attribute should we use to split? © Daniel S. Weld

To be decided:

- How to choose best attribute? Information gain Entropy (disorder)
- · When to stop growing tree?

© Daniel S. Weld

Disorder is bad Homogeneity is good

Entropy 1.0 0.5 1.00

Entropy (disorder) is bad Homogeneity is good

Let S be a set of examples

© Daniel S. Weld

- Entropy(S) = $-P \log_2(P) N \log_2(N)$ where P is proportion of pos example and N is proportion of neg examples and 0 log 0 == 0
- · Example: S has 10 pos and 4 neg Entropy([10+, 4-]) = $-(10/14) \log_2(10/14)$ - $(4/14)\log_2(4/14)$ = 0.863

Information Gain

- · Measure of expected reduction in entropy
- · Resulting from splitting along an attribute

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} (|S_v| / |S|) Entropy(S_v)$$

Where Entropy(S) = -P $log_2(P)$ - N $log_2(N)$

Gain of Splitting on Wind

$$\begin{aligned} Gain(S,A) &= Entropy(S) - \sum_{V \in Values(A)} (|S_V| \, / \, |S|) \; Entropy(S_V) \end{aligned}$$

Where Entropy(S) = -P $log_2(P)$ - N $log_2(N)$

© Daniel S. Weld 19 © Daniel S. Weld 20

Is...

- Entropy([4+,3-]) = .985
- Entropy([7,0]) =
- Gain = 0.863 .985/2 = 0.375

Evaluating Attributes

© Daniel S. Weld 21

Resulting Tree

Recurse!

One Step Later...

Decision Tree Algorithm

BuildTree(TraingData) Split(TrainingData)

Split(D)

If (all points in D are of the same class)
Then Return
For each attribute A
Evaluate splits on attribute A
Use best split to partition D into D1, D2
Split (D1)
Split (D2)

© Daniel S, Weld 25 © Daniel S, Weld 2

Movie Recommendation

· Features?

© Daniel S. Weld 27

Issues

- · Content vs. Social
- Non-Boolean Attributes
- Missing Data
- Scaling up

© Daniel S. Weld 28

Missing Data 1

Day	Temp	Humid	Wind	Tennis?
d1	h	h	weak	n
d2	h	h	S	n
d8	m	h	weak	n
d9	c		weak	yes
d11	m	n	S	yes

- Don't use this instance for learning?
- Assign attribute ...

most common value at node, or most common value, ... given classification

Fractional Values

[1.25+, 0-]

30

[0.75+, 3-]

- · 75% h and 25% n
- Use in gain calculations
- Further subdivide if other missing attributes
- Same approach to classify test ex with missing attr Classification is most probable classification Summing over leaves where it got divided

Non-Boolean Features

· Features with multiple discrete values

Construct a multi-way split
Test for one value vs. all of the others?
Group values into two disjoint subsets?

· Real-valued Features

© Daniel S. Weld

Discretize?
Consider a threshold split using observed values?

© Daniel S. Weld

Attributes with many values

Problem:

- ullet If attribute has many values, Gain will select it
- Imagine using $Date = Jun_3_1996$ as attribute
- · So many values that it

Divides examples into tiny sets Each set likely uniform → high info gain But poor predictor...

· Need to penalize these attributes

One approach: Gain ratio

$$GainRatio(S,A) \equiv \frac{Gain(S,A)}{SplitInformation(S,A)}$$

$$SplitInformation(S,A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where S_i is subset of S for which A has value v_i

SplitInfo ≅ entropy of S wrt values of A

(Contrast with entropy of S wrt target value)

↓ attribs with many uniformly distrib values

e.g. if A splits S uniformly into n sets

SplitInformation = log₂(n)... = 1 for Boolean

Machine Learning Outline

- · Machine learning:
- Supervised learning
- Overfitting
 What is the problem?
 Reduced error pruning
- Ensembles of classifiers

33 ® Daniel S. Weld 34

Figure from w.w.cohen

Overfitting...

· DT is overfit when exists another DT' and

DT has *smaller* error on training examples, but DT has *bigger* error on test examples

· Causes of overfitting

Noisy data, or Training set is too small

© Daniel S. Weld 37

Avoiding Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree, then post-prune

How to select "best" tree:

- $\bullet\,$ Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure

Effect of Reduced-Error Pruning

Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy

Machine Learning Outline

- · Machine learning:
- · Supervised learning
- · Overfitting
- · Ensembles of classifiers

Bagging Cross-validated committees Boosting

© Daniel S, Weld 4: