Knowledge Representation I
(Propositional Logic)

CSE 473
Some KR Languages

- Propositional Logic
- Predicate Calculus
- Frame Systems
- Rules with Certainty Factors
- Bayesian Belief Networks
- Influence Diagrams
- Semantic Networks
- Concept Description Languages
- Nonmonotonic Logic
In Fact...

• All popular knowledge representation systems are equivalent to (or a subset of) Logic
 • Either Propositional Logic
 • Or Predicate Calculus
Probability Theory
What is Propositional Logic?

• And why have you studied it?

• And why are we torturing you again?
473 Topics

Perception NLP Robotics Multi-agent

Inference Supervised Learning Reinforcement Learning

Logic Knowledge Representation Planning

Search Problem Spaces Probability

Agency

© Daniel S. Weld
AI=Knowledge Representation & Reasoning

- Syntax
- Semantics
- Inference Procedure
 - Algorithm
 - Sound?
 - Complete?
 - Complexity

Knowledge Engineering
Basic Idea of Logic

• By starting with true assumptions, you can deduce true conclusions.
Truth

• Francis Bacon (1561-1626)
 • No pleasure is comparable to the standing upon the vantage-ground of truth.

• Thomas Henry Huxley (1825-1895)
 • Irrationally held truths may be more harmful than reasoned errors.

• John Keats (1795-1821)
 • Beauty is truth, truth beauty; that is all
 • Ye know on earth, and all ye need to know.

• Blaise Pascal (1623-1662)
 • We know the truth, not only by the reason, but also by the heart.

• François Rabelais (c. 1490-1553)
 • Speak the truth and shame the Devil.

• Daniel Webster (1782-1852)
 • There is nothing so powerful as truth, and often nothing so strange.
Propositional Logic

• Syntax
 Atomic sentences: P, Q, ...
 Connectives: ∧, ∨, ¬, ⇒

• Semantics
 Truth Tables

• Inference
 Modus Ponens
 Resolution
 DPLL
 GSAT

• Complexity
Propositional Logic: Syntax

• **Atoms**

 \(P, Q, R, \ldots \)

• **Literals**

 \(P, \neg P \)

• **Sentences**

 Any literal is a sentence

 If \(S \) is a sentence

 • Then \((S \land S)\) is a sentence

 • Then \((S \lor S)\) is a sentence

• **Conveniences**

 \(P \supset Q \) same as \(\neg P \lor Q \)
Special Syntactic Forms

- **General Form:**
 \[
 ((q \land \neg r) \supset s) \land \neg (s \land t)
 \]

- **Conjunction Normal Form (CNF)**
 \[
 (\neg q \lor r \lor s) \land (\neg s \lor \neg t)
 \]

 Set notation: \{ (\neg q, r, s), (\neg s, \neg t) \}

 empty clause () = false

- **Binary clauses:** 1 or 2 literals per clause
 \[
 (\neg q \lor r) \quad (\neg s \lor \neg t)
 \]

- **Horn clauses:** 0 or 1 positive literal per clause
 \[
 (\neg q \lor \neg r \lor s) \quad (\neg s \lor \neg t)
 \]
 \[
 (q \land r) \supset s \quad (s \land t) \supset false
 \]
Semantics

- **Syntax**: a description of the *legal* arrangements of symbols
 (Def “sentences”)
- **Semantics**: what the arrangement of symbols *means* in the world
Propositional Logic: SEMANTICS

- "Interpretation" (or "possible world")
 Assignment to each variable either T or F
 Assignment of T or F to each connective via defns

\[
\begin{array}{c|c|c}
P & Q & P \land Q \\
\hline
T & T & T \\
T & F & F \\
F & T & F \\
F & F & F \\
\end{array}
\]

\[
\begin{array}{c|c|c}
P & Q & P \lor Q \\
\hline
T & T & T \\
T & F & T \\
F & T & T \\
F & F & F \\
\end{array}
\]

\[
\begin{array}{c|c}
P & \neg P \\
\hline
T & F \\
F & T \\
\end{array}
\]
Satisfiability, Validity, & Entailment

• S is **satisfiable** if it is true in *some* world

• S is **unsatisfiable** if it is false *all* worlds

• S is **valid** if it is true in *all* worlds

• S1 **entails** S2 if *wherever* S1 is true S2 is also true
Examples

\[P \Rightarrow Q \]

\[R \Rightarrow \neg R \]

\[S \land (W \land \neg S) \]

\[T \lor \neg T \]

\[X \Rightarrow X \]
Notation

\[\Rightarrow \quad \cap \quad \cup \quad \) \quad \textbf{Implication} \ (\text{syntactic symbol})

\begin{align*}
\text{Proves:} & \quad S_1 \dashv\vdash S_2 \text{ if `ie' algorithm says `S2' from } S_1 \\
\text{Entails:} & \quad S_1 \models S_2 \text{ if wherever } S_1 \text{ is true } S_2 \text{ is also true}
\end{align*}

- \textbf{Sound} \quad \dashv \Rightarrow \models
- \textbf{Complete} \quad \models \Rightarrow \dashv
Prop. Logic: Knowledge Engr

1) One of the women is a biology major
2) Lisa is not next to Dave in the ranking
3) Dave is immediately ahead of Jim
4) Jim is immediately ahead of a bio major
5) Mary or Lisa is ranked first

1. Choose Vocabulary
 Universe: Lisa, Dave, Jim, Mary
 LD = “Lisa is immediately ahead of Dave"
 D = “Dave is a Bio Major”

2. Choose initial sentences (wffs)
Reasoning Tasks

• **Model finding**

 KB = background knowledge

 S = description of problem

 Show \((KB \land S)\) is satisfiable

 A kind of *constraint satisfaction*

• **Deduction**

 S = question

 Prove that \(KB \models S\)

 Two approaches:

 1. Rules to derive new formulas from old
 (inference)

 2. Show \((KB \land \neg S)\) is unsatisfiable
Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward & Forward Chaining
 Based on rule of *modus ponens*

 If know $P_1, ..., P_n$ & know $(P_1 \land ... \land P_n) \Rightarrow Q$
 Then can conclude Q

2. Resolution (Proof by Contradiction)
3. GSAT
4. Davis Putnam