Games

• Components:
 – States: board configurations
 – Initial state: the board position and which player will move
 – Successor function: returns list of (move, state) pairs, each indicating a legal move and the resulting state
 – Terminal test: determines when the game is over
 – Utility function: gives a numeric value in terminal states (eg, -1, 0, +1 in chess for loss, tie, win)

Games as Search

• Components:
 – States: board configurations
 – Initial state: the board position and which player will move
 – Successor function: returns list of (move, state) pairs, each indicating a legal move and the resulting state
 – Terminal test: determines when the game is over
 – Utility function: gives a numeric value in terminal states (eg, -1, 0, +1 in chess for loss, tie, win)

Games in AI

• In AI, “games” usually refers to deterministic, turn-taking, two-player, zero-sum games of perfect information
 – Deterministic: next state of environment is completely determined by current state and action executed by the agent (not probabilistic)
 – Turn-taking: 2 agents whose actions must alternate
 – Zero-sum games: if one agent wins, the other loses
 – Perfect information: fully observable

Other Games

<table>
<thead>
<tr>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>perfect information</td>
<td>chess, checkers, go, othello</td>
</tr>
<tr>
<td>imperfect information</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td></td>
<td>bridge, poker, scrabble, nuclear war</td>
</tr>
</tbody>
</table>

Games as Search

• Components:
 – States: board configurations
 – Initial state: the board position and which player will move
 – Successor function: returns list of (move, state) pairs, each indicating a legal move and the resulting state
 – Terminal test: determines when the game is over
 – Utility function: gives a numeric value in terminal states (eg, -1, 0, +1 in chess for loss, tie, win)

• Convention: first player is MAX, 2nd player is MIN
• State utility values from MAX’s perspective
• Initial state and legal moves define the game tree
Intuition

Mini-Max
Mini-Max Properties

- Complete? Yes, if tree is finite
- Optimal?
 - Against an optimal opponent? Yes
 - Otherwise? Then MAX does even better
- Time complexity? \(O(b^m) \)
- Space complexity? \(O(bm) \)

Good Enough?

- Chess:
 - branching factor \(b = 35 \)
 - game length \(m = 100 \)
 - search space \(b^m = 35^{100} \approx 10^{154} \)
- the Universe:
 - number of atoms \(\approx 10^{78} \)
 - age \(\approx 10^{21} \) milliseconds

Alpha-Beta Pruning
Do we need to check this node?

No - this branch is guaranteed to be worse than what max already has

Alpha-Beta

MinVal(state, alpha, beta) {
 if (terminal(state)) return utility(state);
 for (s in children(state)) {
 child = MaxVal(s, alpha, beta);
 beta = min(beta, child);
 if (alpha >= beta) return child;
 }
 return beta;
}

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
Alpha-Beta

MaxVal(state, alpha, beta){
 if (terminal(state)) return utility(state);
 for (s in children(state)){
 child = MinVal(s, alpha, beta);
 alpha = max(alpha, child);
 if (alpha>=beta) return child;
 }
 return alpha;
}

alpha = the highest value for MAX along the path
beta = the lowest value for MIN along the path
\(\alpha \) – the best value for max along the path
\(\beta \) – the best value for min along the path

\(\alpha = -29 \)
\(\beta = -37 \)

\(\beta < \alpha \) prune!
Partial Space Search

- Strategies:
 - search to a fixed depth
 - iterative deepening (most common)
 - ignore ‘quiescent’ nodes
- Static Evaluation Function assigns a score to a non-terminal state

Evaluation Functions

- Othello: multiply pieces by their positions
 - \((9 1 3 3 3 3 1 9)\)
 - \((1 1 1 1 1 1 1 1)\)
 - \((3 1 4 3 4 1 3)\)
 - \((3 1 3 4 4 3 1 3)\)
 - \((3 1 3 4 3 4 1 3)\)
 - \((3 1 4 3 3 4 1 3)\)
 - \((1 1 1 1 1 1 1 1)\)
 - \((9 1 3 3 3 3 1 9)\)

Alpha-Beta Properties

- Still guaranteed to find the best move
- Best case time complexity: \(O(b^{m/2})\)
- Can **double** the depth of search!
- Best case when best moves are tried first
- Good static evaluation function helps!
- But still too slow for chess...

Chess:

- branching factor \(b=35\)
- game length \(m=100\)
- search space \(b^{m/2} = 35^{50} \approx 10^{77}\)
- the Universe:
 - number of atoms \(\approx 10^{78}\)
 - age \(= 10^{21}\) milliseconds

The universe can play chess -- can we?

Evaluation Functions

- Chess:

 \[
 \text{eval}(s) = w_1 \cdot \text{material}(s) + w_2 \cdot \text{mobility}(s) + w_3 \cdot \text{king safety}(s) + w_4 \cdot \text{center control}(s) + \ldots
 \]

 - In practice MiniMax improves accuracy of heuristic eval function
 - But one can construct pathological games where more search hurts performance! (Nau 1981)
End-Game Databases
- Ken Thompson - all 5 piece end-games
- Lewis Stiller - all 6 piece end-games
- Refuted common chess wisdom: many positions thought to be ties were really forced wins - 90% for white
- Is perfect chess a win for white?

Chess Monster
White wins in 255 moves - the longest shortest forced win
(the shortest path to mate is longer than all other shortest paths with the same material - and longer than all known shortest paths with any other material)

(Stiller, 1991)

Deterministic Games in Practice
- **Checkers**: Chinook ended 40 year reign of human world champion Marion Tinsley in 1994; used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions (!)
- **Chess**: Deep Blue defeated human world champion Gary Kasparov in a 6 game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply
- **Othello**: human champions refuse to play against computers because software is too good

Deterministic Games in Practice
- **Go**: human champions refuse to compete against computers, because software is too bad.

<table>
<thead>
<tr>
<th></th>
<th>Chess</th>
<th>Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of board</td>
<td>8 x 8</td>
<td>19 x 19</td>
</tr>
<tr>
<td>Average no.</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>moves per game</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg branching</td>
<td>35</td>
<td>235</td>
</tr>
<tr>
<td>factor per turn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>complexity</td>
<td></td>
<td>Players can pass</td>
</tr>
</tbody>
</table>

Deterministic Games Summary
- Basic idea: minimax - too slow for most games
- Alpha-Beta pruning can reduce the branching factor by up to 2
- Limited depth search may be necessary
- Static evaluation functions necessary for limited depth search and help alpha-beta
- Opening game and End game databases can help
- Computers can beat humans in some games (checkers, chess, othello) but not in others (Go)

Other Games

<table>
<thead>
<tr>
<th></th>
<th>deterministic</th>
<th>chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>perfect</td>
<td>chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
</tr>
<tr>
<td>information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>imperfect</td>
<td>bridge, poker, scrabble, nuclear war</td>
<td></td>
</tr>
<tr>
<td>information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nondeterministic Games

- Involve chance: dice, shuffling, etc.
- Chance nodes: calculate the expected value (e.g., weighted average over all possible dice rolls)

Backgammon

- White has 4 possible moves—but doesn’t know what Black will roll, and so doesn’t know what Black’s legal moves will be

In Practice...

- Chance adds dramatically to size of search space
 - Backgammon: number of distinct possible rolls of dice is 21
 - Branching factor b is usually around 20, but can be as high as 4000 (dice rolls that are doubles)
- Alpha-beta pruning is generally less effective
- Best Backgammon programs use other methods

Imperfect Information

- E.g. card games, where opponents’ initial cards are unknown
- Idea: For all deals consistent with what you can see
 - Compute the minimax value of available actions for each of possible deals
 - Compute the expected value over all deals