CSE 473
Artificial Intelligence

Dan Weld
Krzysztof Gajos
Tessa MacDuff

www.cs.washington.edu/education/courses/cse473/04sp
Outline

- Objectives
- What is AI?
- State of the Art
- Challenges
- Logistics
Goals of this Course

• To introduce you to a set of key:
 Paradigms &
 Techniques

• Teach you to identify when & how to use
 Heuristic search
 Constraint satisfaction
 Machine learning
 Logical inference
 Bayesian inference
 Policy construction
AI as Science

Where did the *physical universe* come from? And what laws guide its dynamics?

How did *biological life* evolve? And how do living organisms function?

What is the nature of *intelligent thought*?
AI as Engineering

• How can we make software systems more powerful and easier to use?

 Speech & intelligent user interfaces
 Autonomic computing
 Mobile robots, softbots & immobots
 Data mining
 Medical expert systems...
What is Intelligence?
Hardware

- 10^{11} neurons
- 10^{14} synapses
- Cycle time: 10^{-3} sec

- 10^7 transistors
- 10^{10} bits of RAM
- Cycle time: 10^{-9} sec
Computer vs. Brain

All Things, Great and Small

© Daniel S. Weld
Evolution of Computers
Projection

• In near future computers will have
 As many processing elements as our brain,
 But far fewer interconnections
 Much faster updates.

• Fundamentally different hardware
 Requires fundamentally different algorithms!
 Very much an open question.
Dimensions of the AI Definition

<table>
<thead>
<tr>
<th>thought vs. behavior</th>
<th>human-like vs. rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems that think like humans</td>
<td>Systems that think rationally</td>
</tr>
<tr>
<td>Systems that act like humans</td>
<td>Systems that act rationally</td>
</tr>
</tbody>
</table>
Mathematical Calculation

\[\partial_r^2 u = - \left[E' - \frac{l(l + 1)}{r^2} - r^2 \right] u(r) \]

\[e^{-2s} \left(\partial_s^2 - \partial_s \right) u(s) = - \left[E' - l(l + 1)e^{-2s} - e^{2s} \right] u(s) \]

\[e^{-2s} \left[e^{\frac{1}{2}s} \left(e^{-\frac{1}{2}s} u(s) \right)'' - \frac{1}{4} u \right] = - \left[E' - l(l + 1)e^{-2s} - e^{2s} \right] u(s) \]

\[e^{-2s} \left[e^{\frac{1}{2}s} \left(e^{-\frac{1}{2}s} u(s) \right)'' \right] = - \left[E' - \left(l + \frac{1}{2} \right)^2 e^{-2s} - e^{2s} \right] u(s) \]

\[v'' = -e^{2s} \left[E' - \left(l + \frac{1}{2} \right)^2 e^{-2s} - e^{2s} \right] v \]
State of the Art

“I could feel – I could smell – a new kind of intelligence across the table”
-Gary Kasparov

Saying Deep Blue doesn’t really think about chess is like saying an airplane doesn’t really fly because it doesn’t flap its wings.

– Drew McDermott
Speech Recognition
Shuttle Repair Scheduling
Compiled into 2,000 variable SAT problem

Real-time planning and diagnosis
2004 & 2009
Europa Mission ~ 2018
Limits of AI Today

• Today’s successful AI systems
 operate in well-defined domains
 employ narrow, specialize knowledge

• Commonsense Knowledge
 needed in complex, open-ended worlds
 • Your kitchen vs. GM factory floor
 understand unconstrained Natural Language
Role of Knowledge in Natural Language Understanding

• WWW Information Extraction
• Speech Recognition
 "word spotting" feasible today
 continuous speech – rapid progress
• Translation / Understanding
 limited progress
 The spirit is willing but the flesh is weak.
 (English)
 The vodka is good but the meat is rotten.
 (Russian)
How the heck do we understand?

• John gave Pete a book.
• John gave Pete a hard time.
• John gave Pete a black eye.
• John gave in.
• John gave up.
• John’s legs gave out beneath him.
• It is 300 miles, give or take 10.
How to Get Commonsense?

• CYC Project (Doug Lenat, Cycorp)
 Encoding 1,000,000 commonsense facts about the world by hand
 Coverage still too spotty for use!
 (But see Digital Aristotle project)

• Machine Learning
• Alternatives?
Recurrent Themes

• **Representation vs. Implicit**

 Neural Nets - McCulloch & Pitts 1943

 • Died out in 1960’s, revived in 1980’s
 • Simplified model of real neurons, but still useful; parallelism

 Brooks “Intelligence without Representation”

 • **Logic vs. Probability**

 In 1950’s, logic dominates (McCarthy, ...)

 • attempts to extend logic “just a little” (e.g. nomon)

 1988 – Bayesian networks (Pearl)

 • efficient computational framework

 Today’s hot topic: combining probability & FOL
Recurrent Themes II

• **Weak vs. Strong Methods**
 - Weak – general search methods (e.g. A* search)
 - Knowledge intensive (e.g. expert systems)
 - more knowledge ⇒ less computation
 - Today: resurgence of weak methods
 - desktop supercomputers
 - How to combine weak & strong?

• **Importance of Representation**
 - Features in ML
 - Reformulation
473 Topics

- Agents & Environments
- Problem Spaces
- Search & Constraint Satisfaction
- Knowledge Repr’n & Logical Reasoning
- Machine Learning
- Uncertainty: Repr’n & Reasoning
- Dynamic Bayesian Networks
- Markov Decision Processes
Logistics:

• Dan Weld
weld @ cs
• Krzysztof Gajos
kgajos @ cs
• Tessa MacDuff
tessa @ cs

• Required Reading
 Russell & Norvig “AIMA2”
 Papers from WWW

• Grading:
 Problem Sets 45%
 Final 30%
 Midterm 15%
For You To Do

• Get on class mailing list
• Read Ch 2 in text
 \textit{Ch 1 is good, but optional}
• PS1 forthcoming