Problem Set 2 Solutions
CSE 473

Krzysztof Gajos
kgajos@cs.washington.edu

May 4, 2004

1 Abalone

Sorry, I will fill this one later.

2 CSP

There are a number of ways to solve this problem in a reasonable way. Here is my suggestion:

For each quarter of your ugrad career, we can have three variables (assuming that you take three
classes per quarter). The domain of each variable contains all available courses. That is, if you
started school in the Fall of 2000, the first three variables could be au00-1, au00-2 and au00-3.
To each of these variables you can assign any course from the course catalog. Now, assuming that
you have the right vocabulary, you can propose the following kinds of constraints:

e you have to take at least 10 CSE courses (this is an n-ary constraint that applies to all
viariables)

e you have to take CSE 473 (again, an n-ary constraint that makes sure that at least one
variable is set to CSE 473

e you cannot take the same class twice (n-ary constraint)

e you have to tak CSE 143 before you take CSE 473 (this one is tricky to represent: you could
implement it as a very complex n-ary constraint where you analyze the assignments of classes
to quarters, and reject any assignments where it is impossible to take CSE 143 before Al,
alternatively you can install O(n?) binary constraints between every pair of variables — this
is the theoretically cleaner but practially less efficient approach)

Another way to solve this problem is to make each course a variable, and the domain of each
variable will be the list of quarters while you are in school or the “null” quarter (when this quarter
is selected as the value for a subject, then you will never take the subject). This formulation,
although slightly less intuitive to some, will make some constraints easier. For example, it is easier
now to express the constraint that says that CSE 473 has to be taken after CSE 143 (now it is
a binary constraint between the two variables representing these subjects). However, you need to

add a new type of constraint that says that each quarter you need to take at least two but no more
than four classes. This, would most easily be expressed as an ugly n-ary constraint.

You can add furter constraints, such as that you need to take at least one class from Dan Weld,
at least one TA-ed by Tessa and at least two whose code is a prime number.

3 AIMA 7.8

Answers: valid, satisfiable, valid

4 Fred

First, convert everything to CNF. I further chose to use the set notation we discussed in class.
Attempting to show that what we know entails Fred being rich, we will try to show the contrary
and derive contradiction. In this case, all I do is pick out unit clauses and keep eliminating clauses
and literals as follows:

{(=R,H) (R,=H) (R,L) (=H,F) (-L,F) (=F.S) (=R)}

set R = false

{ (-H)(L GEHF)ELF)EFRS))
set L =true

{ (—=H) (-H,F)(F)(=FS) }
set H = false

{ (F)(EFRS))
set F = true

{ (S }
set S = true

{ }

You could have used resolution or anything else you want. As you see, we do not get a contra-
diction. Which means that what we know about Fred does not entail that he is rich but it does not
entail the oposite either! All it says that there exists a consistent world, in which Fred is not rich
but it does not say that Fred can never be rich.

We use the same methods to show that Fred is smelly:

{(=R,H) (R,=H) (R,L) (=H,F) (=L,F) (=F,S) (=S)}
set S =false

{=R,H) (R,=H) (R.L) (=H,F) -L.F) (=F) '}

set F = false

{(=R,H) (R,-H) (R,L) (=H) (=L) }
set L = false

{(=R,H) (R,-H) (R) (=H) }
set H = false

{=R (R)
/ resolve
{=R) 0" (R) }
Notice that this time we finish by performing resolution on two unit clauses and we end up with
an empty clause, i.e. contradiction! Excellent, even if Fred is not guaranteed to be rich, we know

he is smelly. An important thing to observe her is that resolution does not eliminate the clauses
that participate in it! It only produces new clauses.

5 FOL
(a)

one predicate needs explaining: fools(fooler, foolee, time)

é’k;)isPolitician(x) (FpVifools(z,p,t) AVp3fools(xz,p,t) A Ip s~ fools(z, p,t))

S)il)e predicate needing explaining: tookClass(student, nameOfClass, academicQuarter)
gi)isStudent(x) A tookClass(x, “AI", “sp04”)

(()ije unusal predicate: isScorelnClass(variable, nameOfClass, academicQuarter)

(f

Vg,03atsAcademicQtr(q) AisScoreInClass(o, “OS”, q) A isScoreInClass(a, “AI"”, q) A (a > o)

