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A look at a subset of Artificial Life
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� Attempts to elucidate principles of evolution
� Builds models of self-replicating organisms

� Computational cost limits physical fidelity of the model.
� Digital or chemical models

� Mutation creates variation in populations
� Reproduction can be sexual or asexual

� Ability to (out) reproduce its genome is the usual 
fitness measure
� For some research, other fitness measures are used.
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� A Search Technique inspired by biology
� Points in search space represented as “genomes”

� Crossover produces new points in search space
� Mutation ensures variety

� Ensures more of search space is sampled

� Fitness function determines which subset of 
population become progenitors

� Larger populations increase coverage of space.

� Search usually walks through “invalid” points 
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� Motivation: The complexity of cellular life
� Tierra and the evolution of digital organisms

� Avida and other Tierra inspired work 
� Lessons/Future Research
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� PDB Molecule of the Month The Glycolytic
Enzymes
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� Where did glucose come from?
� Where did all those intermediate products 

come from?

� Where did all those wonderful enzymes come 
from?

� Take away any of the enzymes, and the 
system collapses.
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� Molecules with differential binding affinities 
for DNA.

� Overlapping control regions.

� Positive and negative feedback.
� Cooperative binding.
� How did it make the recipe?



������+���'
�����������������
��
�
����	

� Design Requirements/Inventions:
� Organisms must be self-reproductive

� Ability to out-reproduce the competition only 
fitness criteria
� Avoids “artificial” fitness functions.

� Control (jumps/calls) is effected through templates
and targets, which are complementary “bit strings”
� Jump nop1 nop0 nop1 goes to nop0 nop1 nop0

� Organisms sense the environment
� Dynamic “fitness” function
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� Each organism (cpu) has
� 4 registers (A, B, C, D)

� Instruction pointer
� 10 word stack

� Time slicing “implements” parallel organisms
� When space for new organisms is needed, 

the oldest organisms are reaped (as a rule).
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� Data Movement
� PushA, PopA, PushB, PopB, etc for C and D

� MOVDC (D <- C), MOVBA, COPY ([A] to [B])

� Control
� JumpO, JumpB, Call, Ret, IfZ, nop0, nop1

� Calculation
� subcab, subaac, inca, incb, decc, incd, zero, not, shl

� Biological and Sensing
� adr, adrb, adrF, mal (allocate memory), divide
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� A copy error every X copy instructions
� Cosmic rays

� A bit in the soup gets flipped every Y instructions
� Works because no cells are autosomes
� Biased, not random

� Probabilistic results of instructions
� Every so often an instruction misfires
� E.g., incA adds 2

� No Insertion/deletions
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Lots of redundancy

• Labels can be shortened

• Different control constructs

• Cells only replicate once or 
twice

• Templates can be labels

• Various return addresses 
can be used

• Control can use any 
matching code
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� <C = size, B=@self>
� nop1 nop1 nop0 nop1
� mal
� call nop0 nop0 nop1 nop1
� divide
� jump nopo nop0 nop1 nop0
� ifz
� nop1 nop1 nop0 nop0
� <copy loop>
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� <C = size, B=@self>
� nop1 nop1 nop0 nop1
� mal
� call nop0 nop0 nop1 nop1
� divide
� pushb (was jump) nopo nop0 nop1 nop0
� ifz
� ret (was nop1) nop1 nop0 nop0
� <copy loop>
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� Stays just ahead of the reaper
� nop1 nop1 zero not0 shl shl movdc
� adrb nop0 nop0 pushc nop0
� subaac
� movba pushd nop0
� adr nop0 nop1
� inca
� subcab pusha nop1 pushd nop1
� mal 
� call nop0 nop0 nop1 nop0
� divide
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� <C = size, B = @self> 

� mal pusha call movii pusha
� call nop0 nop0 nop1 nop1
� divide movii
� pusha

� mal 
� call nop0 nop0 nop1 nop1 
� divide mal subaac nop1
� ret zero nop1 zero (jumps to start of daughter)

� nop1 nop1 nop1 nop0
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� A very small self-replicating parasite (15 long)
� Nop1

� Adrb nop0
� MovBA
� Adrf nop0 nop0
� subAAC

� Jump nop0 nop0 nop1 nop0
� Nop1 nop1

� Even smaller viable program:
� Nop1
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� A template can match any nearby target
� A request for memory can kill any organism, 

even one “fitter”

� A daughter cell can be placed anywhere
� Allocating a large amount of memory for a 

daughter can kill tens of organisms, creating 
a dieoff
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� Symbionts arise quite frequently
� When a target is mutated, the target in 

another cell is used.
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� Instructions are left in memory when an 
organism is reaped.

� “Parasites” keep using these instructions.
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� Teirra lacks insertion/deletion mutations
� Biology uses indels

� Harder to remove instructions without deletions
� Harder to make room for new instructions

� Tierra makes up for it with sloppy replicators
that move instructions around willy nilly
� Buy maybe this is needed anyway?
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� Sloppiness (ad-hoc) mixing gave us
� Mitochondia (ingestion without digestion)

� Cloroplasts in bacteria (same story)
� Gene mixing (via viruses)
� Diploidy from Haploidy
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� Inspired by Tierra, but
� Controlled instruction pointers (less slopiness)
� Insertion/Deletion mutations
� 2 dimensional grid of organisms, not instructions
� Only local next-neighbor effects
� Fitness functions to augment reproduction

� Experiments to test biological theories
� Evolution of Complexity
� Evolution of Complex Functions
� Relationship among evolution rate and landscape 
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� Inspired by Tierra/Avida but
� Focus is on evolutionary trajectories.

� Are there principles regarding these trajectories?

� Will exploit the constraints of physics
� Conservation Laws!
� Energy requirements and metabolism

� Will eventually move to chemical modeling to get 
closer to biology.
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� Evolution finds corners of the search space
� If you build it, they will exploit it

� Complexity comes from exploiting environment

� Co-evolution makes the problem interesting 
and different
� Changing fitness functions

� Designing a system for open-ended evolution 
is still very much an open-ended problem.
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� Watching evolving dynamical systems give 
insight and ideas.

� Biologists aren’t trained to do this.

� Many insights will be gained that will 
eventually transfer over to biological thinking
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� Is the complexity of the phage lambda 
lyse/lytic growth mechansim any more or less 
complex than the programs that Tierra was 
evolving?


