Lecture 1 What is AI?

CSE 473 Artificial Intelligence Oren Etzioni

Goals of this Course

- To teach you the main ideas of Al.
 - Give you Al "color"
- To introduce you to a set of key techniques and algorithms from Al
- To introduce you to the applicability and limitations of these methods (problem sets)

What is Intelligence?

What is Artificial Intelligence?

Hardware

10¹¹ neurons 10¹⁴ synapses cycle time: 10⁻³ sec

 10^{7} transistors 10^{10} bits of RAM cycle time: 10^{-9} sec

Conclusion

- In near future we can have computers with as many processing elements as our brain, but:
 - far fewer interconnections (wires or synapses)
 - much faster updates.

Fundamentally different hardware may require fundamentally different algorithms!

- Very much an open question.
- Neural net research.

What Level of Abstraction?

- Hardware (build brains)
- "network" (neural networks?)
- Algorithm + representation
- Intermediate Behavior (cognitive modeling)
- Task Performance (Deep Blue, Turing Test)
- Task Competence (Idealized view)

Classical Al

The principles of intelligence are separate from any hardware / software / wetware implementation

Look for these principles by studying how to perform tasks that require intelligence

Can we rely on simple tasks? (e.g., 8-puzzle, tic tac toe)

Success Story: Medical Expert Systems

Mycin (1980)

• Expert level performance in diagnosis of blood infections

Today: 1,000's of systems

- Everything from diagnosing cancer to designing dentures
- Often outperform doctors in clinical trials
- Major hurdle today non-expert part doctor/ machine interaction

from brute-force search ¹²

Autonomous Systems

In the 1990's there was a growing concern that work in classical AI ignored crucial scientific questions:

- How do we integrate the components of intelligence (e.g. learning & planning)?
- How does perception interact with reasoning?
- How does the demand for real-time performance in a complex, changing environment affect the architecture of intelligence?

Provide a standard problem where a wide range of technologies can be integrated and examined

By 2050, develop a team of fully autonomous humanoid robots that can win against the human world champion team in soccer.

Softbots: 'intelligent' program that uses software tools on a person's behalf.

- Sensors = LS, Google, etc.
- Effectors = RM, ftp, Amazon.com

Software: not physical but not simulated. Active: not a help system (softbot safety!)

Key Hard Problem for Al

Today's successful AI systems

- operate in well-defined domains
- employ narrow, specialize knowledge

Commonsense Knowledge

- needed to operate in messy, complex, open-ended worlds
 - Your kitchen vs. GM factory floor
- understand unconstrained Natural Language

Role of Knowledge in Natural Language Understanding

Speech Recognition

- "word spotting" feasible today
- continuous speech rapid progress
- turns out that "low level" signal not as ambiguous as we once thought
- **Translation / Understanding**
 - very limited progress

The spirit is willing but the flesh is weak. (English)

The vodka is good but the meat is rotten. (Russian)

Syntactic, Semantic, Analogical Knowledge

Time flies like an arrow.

Fruit flies like a banana.

Fruit flies like a rock.

How to Get Commonsense?

CYC Project (Doug Lenat, Cycorp)

- Encoding 1,000,000 commonsense facts about the world by hand
- Coverage still too spotty for use!

Alternatives?

- Open Mind
- KnowltAll

Historical Perspective

(4th C BC+) Aristotle, George Boole, Gottlob Frege, Alfred Tarski formalizing the laws of human thought (16th C+) Gerolamo Cardano, Pierre Femat, **James Bernoulli, Thomas Bayes** formalizing probabilistic reasoning (1950+) Alan Turing, John von Neumann, **Claude Shannon** thinking as computation (1956) John McCarthy, Marvin Minsky, Herbert Simon, Allen Newell

start of the field of AI

Recurrent Themes

Neural nets vs Al

- McCulloch & Pitts 1943
- Died out in 1960's, revived in 1980's
 - Neural nets vastly simplified model of real neurons, but still useful & practical – massive parallelism
 - particular family of learning and representation techniques

Logic vs Probability

- In 1950's logic seemed more computationally & expressively attractive (McCarthy, Newell)
 - attempts to extend logic "just a little" to deal with the fact that the world is uncertain!
- 1988 Judea Pearl's work on Bayes nets
 - provided efficient computational framework
- Today no longer rivals
 - hot topic: combining probability & first-order logic

Recurrent Themes, cont.

Weak vs Strong Methods

- Weak general search methods
 - A* search, constraint propagation, ...
- Rise of "knowledge intensive" approach
 - expert systems
 - more knowledge, less computation
- Today: resurgence of weak methods
 - desktop supercomputers
 - in highly competitive domains (Chess) exceptions to the general rules are most important!
- How to combine weak and strong methods seamlessly?

(Re-)Current Themes

- Combinatorial Explosion
- Micro-world successes don't scale up.
- How to Organize and accumulate large amounts of knowledge?
- How to translate from informal, ill-structured statements to formal reasoning (e.g., understand a story)?
- What are reasonable simplifying assumptions?