Preview
Neural Networks

Perceptrons

Gradient descent

Multilayer networks

e Backpropagation

Connectionist Models

Consider humans: Properties of neural nets:

¢ Neuron switching time ~ .001 second e Many neuron-like threshold switching units

10
¢ Number of neurons ~ 10 e Many weighted interconnections among units

e Connections per neuron ~ 1043

Highly parallel, distributed process
e Scene recognition time ~ .1 second

Emphasis on tuning weights automatically
e 100 inference steps doesn’t seem like enough

= Much parallel computation
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Perceptron
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Sometimes we’ll use simpler vector notation:
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Perceptron Training Rule

where
Aw; =n(t — o)w;

Where:
e ¢t = ¢(%) is target value
® 0 is perceptron output

e 7 is small constant (e.g., 0.1) called learning rate

Gradient Descent
To understand, consider simpler linear unit, where

0=wo+wix1 + -+ wWpTy

Let’s learn w;’s that minimize the squared error

Elw] = % > (ta = 04)?

deD

Where D is set of training examples

Decision Surface of a Perceptron
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(@) (b)
Represents some useful functions

e What weights represent g(z1,x2) = AND(z1,%2)?

But some functions not representable
e All not linearly separable

e Therefore, we'll want networks of these...

Perceptron Training Rule

Can prove it will converge if
e Training data is linearly separable

e 7 sufficiently small

Gradient Descent
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Gradient:
E OF E
VB = | g g
Training rule:
AW = —nVE[w]
Le. oF
Aw; = —n ow;

Gradient Descent

GRADIENT-DESCENT(training_examples, n)
Initialize each w; to some small random value
Until the termination condition is met, Do

e Initialize each Aw; to zero.

e For each (Z,t) in training_erxamples, Do
— Input instance Z to unit and compute output o
— For each linear unit weight w;, Do

Aw; — Aw; + n(t — o)z,
e For each linear unit weight w;, Do

w; — w; + Aw;

Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent:
Do until convergence
1. Compute the gradient VEp[w]
2. W «— & — nVEp[w]

Gradient Descent
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Summary

Perceptron training rule guaranteed to succeed if
e Training examples are linearly separable

e Sufficiently small learning rate n

Linear unit training rule uses gradient descent

e Guaranteed to converge to hypothesis with minimum
squared error

e Given sufficiently small learning rate 7
e Even when training data contains noise

e Even when training data not separable by H

Incremental Mode Gradient Descent:
Do until convergence

For each training example d in D
1. Compute the gradient VEy[w]
2. W — W — nVEy[w)
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Incremental Gradient Descent can approximate Batch
Gradient Descent arbitrarily closely if » made small enough



Multilayer Networks of Sigmoid Units
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Error Gradient for a Sigmoid Unit
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We can derive gradient descent rules to train
¢ One sigmoid unit
o Multilayer networks of sigmoid units —
Backpropagation
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Nice property:

Sigmoid Unit

o(x) is the sigmoid function
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Backpropagation Algorithm

Initialize all weights to small random numbers
Until convergence, Do
For each training example, Do
1. Input it to network and compute network outputs
2. For each output unit k&

O — Ok(l — Ok)(tk — Ok)
3. For each hidden unit A
On «— op(1—op) Z Wi, 1Ok

k€outputs

4. Update each network weight w; ;
Wi,j — wij + Aw,j

where Aw; ; = né;x;

Learning Hidden Layer Representations

Inputs Outputs

Learned hidden layer representation:

Input Hidden Output
Values
10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

More on Backpropagation

Gradient descent over entire network weight vector
Easily generalized to arbitrary directed graphs

Will find a local, not necessarily global error minimum

— In practice, often works well
(can run multiple times)

Often include weight momentum o

Aw; ;(n) = ndjz; ; + aAw; j(n —1)
Minimizes error over training examples
— Will it generalize well to subsequent examples?
Training can take thousands of iterations — slow!

Using network after training is very fast

A target function:
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Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned?

Training

Sum of squared errors for each output unit
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Training

Hidden unit encoding for input 02000000
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Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
e Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
o Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as training
progresses

Overfitting in Neural Nets

Error versus weight updates (example 1)
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Expressiveness of Neural Nets

Boolean functions:

e Every Boolean function can be represented by network
with single hidden layer

e But might require exponential (in number of inputs)
hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error,
by network with one hidden layer

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers

Error versus weight updates (example 2)
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Overfitting Avoidance

Penalize large weights:

E(w@) = % YD (tra—owa) +y ) wi Neural Networks: Summary
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Perceptrons
Train on target slopes as well as values:

Gradient descent
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Weight sharing

Early stopping



