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Outline

» Decision problems
<> Value iteration

¢ Policy iteration
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Sequential decision problems
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Example MDP

0.8

1 START 0.1 0.1

Model M{; = P(j|i,a) = probability that doing a in i leads to j

Each state has a reward R(1)
= -0.04 (small penalty) for nonterminal states
= +1 for terminal states
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Solving MDPs

In search problems, aim is to find an optimal sequence

In MDPs, aim is to find an optimal policy
l.e., best action for every possible state
(because can’t predict where one will end up)

Optimal policy and state values for the given R(%):

3 — — — +1 3 0.812 0.868 0.912 +1
2 » » -1 2 0.762 0.660 -1
1 » - - - 1 0.705 0.655 0.611 0.388
1 2 3 4 1 2 3 4
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Utility

In sequential decision problems, preferences are expressed
between sequences of states

Usually use an additive utility function:
U([s1,52,53,---,8n]) = R(s1) + R(s2) + R(s3) +---+ R(sn)
(cf. path cost in search problems)

Utility of a state (a.k.a. its value) is defined to be
U(s;) = expected sum of rewards until termination
U(s;) = assuming optimal actions

Given the utilities of the states, choosing the best action is just MEU: choose
the action such that the expected utility of the immediate successors is highest.
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Bellman equation

Definition of utility of states leads to a simple relationship among utilities of
neighboring states:

expected sum of rewards
= current reward
+ expected sum of rewards after taking best action

Bellman equation (1957):

U(i) = R(i) + max MUEGEM

U(1,1) = —0.04
+ max{0.8U(1,2) + 0.1U(2,1) + 0.1U(1, 1), up
+ max{0.9U(1,1) + 0.1U (1, 2) left
+ max{0.9U(1,1) + 0.1U(2,1) down
+ max{0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)} right

One equation per state = n nonlinear equations in n unknowns
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Value iteration algorithm

ldea: Start with arbitrary utility values

Update to make them locall y consistent with Bellman eqgn.
Everywhere locally consistent = global optimality

repeat until “no change”

U(i) < R(7) + max M‘L,Q.Qgim for all ¢
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Summary

e We can design rational agents based on probability theory and utility
theory

e Sequential decision making in stochastic environments (MDPs) can be
solved by computing a polic y

e Value iteration is an algorithm for computing optimal policies.
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