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Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

Talk to Parrot D

Go To Pet Store Buy a Dog

Go To School Go To Class

o

L

Go To Supermarket Buy Tuna Fish

Go To Sleep Buy Arugula

[ ]
[ ]
Buy Milk D|V \Y!
[ ]
[ ]

Read A Book

Sitin Chair Sit Some More

Etc. Etc. ... Read A Book

After-the-fact heuristic/goal test inadequate
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Outline
{ Search vs. planning
{ STRIPS operators
{ Partial-order planning
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Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

| Search | Planning
States Lisp data structures | Logical sentences
Actions | Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from Sy Constraints on actions
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Planning in situation calculus

PlanResult(p, s) is the situation resulting from executing p in s
PlanResult([],s) = s
PlanResult([a|p], s) = PlanResult(p, Result(a, s))
Initial state At(Home, Sy) A ~Have(Milk,Sp) A ...
Actions as Successor State axioms
Have(Milk, Result(a,s)) <
[(a = Buy(Milk) A\ At(Supermarket,s))V (Have(Milk,s) Na # ...)]

Query
s = PlanResult(p, So) A At(Home, s) A Have(Milk,s) A ...

Solution
p = [Go(Supermarket), Buy(Milk), Buy(Bananas), Go(HWS), .. ]

Principal difficulty: unconstrained branching, hard to apply heuristics
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State space vs. plan space

Standard search: node = concrete world state
Planning search: node = partial plan

Defn: open condition is a precondition of a step not yet fulfilled

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another

Gradually move from incomplete/vague plans to complete, correct plans
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STRIPS operators

Tidily arranged actions descriptions, restricted language
AcTION: Buy(z)

PRECONDITION: At(p), Sells(p, x)

EFFECT: Have(z)

[Note: this abstracts away many important details!]
Restricted language = efficient algorithm

Precondition: conjunction of positive literals
Effect: conjunction of literals

At(p) Sells(p,x)

Buy(x)

Have(x)
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Partially ordered plans

Start Left Right
Sock Sock

LeftShoeOn, ¢ RightShoeOn LeftSockOn RightSockOn

Left Right
Finish Shoe Shoe

LeftShoeOn, RightShoeOn

!

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it
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POP algorithm sketch

POP algorithm contd.

function POP(initial, goal, operators) returns plan

plan <+ MAKE-MINIMAL-PLAN(nitial, goal)

loop do
if SoLuTiON?( plan) then return plan
Shneed; €4 SELECT-SUBGOAL( plan)
CHOOSE-OPERATOR( plan, operators, Sneed, €)
RESOLVE-THREATS( plan)

end

procedure CHOOSE-OPERATOR(plan, operators, Speed, €)

choose a step S.q44 from operators or STEPS( plan) that has ¢ as an effect
if there is no such step then fail
add the causal link Sq4q —°3 Srneed t0 LINKS( plan)
add the ordering constraint S,qq¢ < Sneed t0 ORDERINGS( plan)
if Sqaq is @ newly added step from operators then
add S,44 to STEPS( plan)
add Start < Sgqq4 < Finish to ORDERINGS( plan)

function SELECT-SUBGOAL( plan) returns S,ced, ¢

pick a plan step Speeqd from STEPS( plan)
with a precondition ¢ that has not been achieved
return S,ced, C

procedure RESOLVE-THREATS(plan)

for each Sinreq: that threatens a link S; _¢, S; in LINKs( plan) do
choose either
Demotion: Add Sinreqr < Si t0 ORDERINGS( plan)
Promotion: Add S; < Sihreqat t0 ORDERINGS( plan)
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POP algorithm contd.

if not CONSISTENT( plan) then fail
end

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals
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Clobbering and promotion/demotion
A clobberer is a potentially intervening step that destroys the condition achieved
by a causal link. E.g., Go(Home) clobbers At(HW S):
S h DEMOTION
Y /, Demotion: put before
oot || Go(HWS)
|
//
\\ At(Home)
At(HWS) _\ Promotion: put after
Buy(Drill) | Buy(Drill)
/
~__ 7
PROMOTION
Finish
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Example: Blocks world Example contd.

"Sussman anomaly" problem

START ﬂ E

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

][~

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0On(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x,Table)

Clear(z) On(x,y) On(AB) On(B.C)

+ several inequality constraints FINISH
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Example contd. Example contd.
C] C]
START E E START m E
On(C,A) On(A,Table) CI(B) On(B,Table) CI(C) On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

/ / / / PutOn(A,B)
clobbers CI(B)
=> order after
PutOn(B,C)

wav On(B,z) O_Mg _w (B) O: ,2) Cl Q
CI(A) On(A,z) CI(B)
PutOn(B,C) - PutOn(B,C)
PUton(A,B) |==~

\

On(A,B) O:Amov On(A,B) O:AW_.Q

FINISH FINISH
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Example contd.

C]
START E E
On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)
U_EUOU:APWV_A )
clobbers CI(B
V4 k\\ => order after
on(c,2) ciC) PutOn(B,C)
PutOn(B,C
PutOnTable(C) - n_occ%m OV:Q
~d => order after
Se PutOnTable(C)
<~ \ y
N AN CI(B) On(B,z) CI(C)
CI(A) On(A,z) CI N
(%) On(A.2) Ci(E) _> Puton(s,c)
PUtOn(A,B) ==~

\

\ #
On(A,B) On(B,C)

FINISH
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