Introduction to Artificial Intelligence

Planning

Chapter 11

Dieter Fox

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-0

Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms seem to fail miserably:

Talk to Parrot D

Go To Pet Store Buy a Dog

Go To School Go To Class

o

L

Go To Supermarket Buy Tuna Fish

Go To Sleep Buy Arugula

[]
[]
Buy Milk D|V \Y!
[]
[]

Read A Book

Sitin Chair Sit Some More

Etc. Etc. ... Read A Book

After-the-fact heuristic/goal test inadequate

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-2

Outline
{ Search vs. planning
{ STRIPS operators
{ Partial-order planning
Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11

Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

| Search | Planning
States Lisp data structures | Logical sentences
Actions | Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from Sy Constraints on actions

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11

Planning in situation calculus

PlanResult(p, s) is the situation resulting from executing p in s
PlanResult([],s) = s
PlanResult([a|p], s) = PlanResult(p, Result(a, s))
Initial state At(Home, Sy) A ~Have(Milk,Sp) A ...
Actions as Successor State axioms
Have(Milk, Result(a,s)) <
[(a = Buy(Milk) A\ At(Supermarket,s))V (Have(Milk,s) Na # ...)]

Query
s = PlanResult(p, So) A At(Home, s) A Have(Milk,s) A ...

Solution
p = [Go(Supermarket), Buy(Milk), Buy(Bananas), Go(HWS), ..]

Principal difficulty: unconstrained branching, hard to apply heuristics

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-4

State space vs. plan space

Standard search: node = concrete world state
Planning search: node = partial plan

Defn: open condition is a precondition of a step not yet fulfilled

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another

Gradually move from incomplete/vague plans to complete, correct plans

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-6

STRIPS operators

Tidily arranged actions descriptions, restricted language
AcTION: Buy(z)

PRECONDITION: At(p), Sells(p, x)

EFFECT: Have(z)

[Note: this abstracts away many important details!]
Restricted language = efficient algorithm

Precondition: conjunction of positive literals
Effect: conjunction of literals

At(p) Sells(p,x)

Buy(x)

Have(x)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-5

Partially ordered plans

Start Left Right
Sock Sock

LeftShoeOn, ¢ RightShoeOn LeftSockOn RightSockOn

Left Right
Finish Shoe Shoe

LeftShoeOn, RightShoeOn

!

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-7

POP algorithm sketch

POP algorithm contd.

function POP(initial, goal, operators) returns plan

plan <+ MAKE-MINIMAL-PLAN(nitial, goal)

loop do
if SoLuTiON?(plan) then return plan
Shneed; €4 SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan, operators, Sneed, €)
RESOLVE-THREATS(plan)

end

procedure CHOOSE-OPERATOR(plan, operators, Speed, €)

choose a step S.q44 from operators or STEPS(plan) that has ¢ as an effect
if there is no such step then fail
add the causal link Sq4q —°3 Srneed t0 LINKS(plan)
add the ordering constraint S,qq¢ < Sneed t0 ORDERINGS(plan)
if Sqaq is @ newly added step from operators then
add S,44 to STEPS(plan)
add Start < Sgqq4 < Finish to ORDERINGS(plan)

function SELECT-SUBGOAL(plan) returns S,ced, ¢

pick a plan step Speeqd from STEPS(plan)
with a precondition ¢ that has not been achieved
return S,ced, C

procedure RESOLVE-THREATS(plan)

for each Sinreq: that threatens a link S; _¢, S; in LINKs(plan) do
choose either
Demotion: Add Sinreqr < Si t0 ORDERINGS(plan)
Promotion: Add S; < Sihreqat t0 ORDERINGS(plan)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

POP algorithm contd.

if not CONSISTENT(plan) then fail
end

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 11 0-8 Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-9
Clobbering and promotion/demotion
A clobberer is a potentially intervening step that destroys the condition achieved
by a causal link. E.g., Go(Home) clobbers At(HW S):
S h DEMOTION
Y /, Demotion: put before
oot || Go(HWS)
|
//
\\ At(Home)
At(HWS) _\ Promotion: put after
Buy(Drill) | Buy(Drill)
/
~__ 7
PROMOTION
Finish
Chapter 11 0-10 Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-11

Example: Blocks world Example contd.

"Sussman anomaly" problem

START ﬂ E

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

][~

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0On(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x,Table)

Clear(z) On(x,y) On(AB) On(B.C)

+ several inequality constraints FINISH
Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-12 Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-13
Example contd. Example contd.
C] C]
START E E START m E
On(C,A) On(A,Table) CI(B) On(B,Table) CI(C) On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

/ / / / PutOn(A,B)
clobbers CI(B)
=> order after
PutOn(B,C)

wav On(B,z) O_Mg _w (B) O: ,2) Cl Q
CI(A) On(A,z) CI(B)
PutOn(B,C) - PutOn(B,C)
PUton(A,B) |==~

\

On(A,B) O:Amov On(A,B) O:AW_.Q

FINISH FINISH

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-14 Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11 0-15

Example contd.

C]
START E E
On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)
U_EUOU:APWV_A)
clobbers CI(B
V4 k\\ => order after
on(c,2) ciC) PutOn(B,C)
PutOn(B,C
PutOnTable(C) - n_occ%m OV:Q
~d => order after
Se PutOnTable(C)
<~ \ y
N AN CI(B) On(B,z) CI(C)
CI(A) On(A,z) CI N
(%) On(A.2) Ci(E) _> Puton(s,c)
PUtOn(A,B) ==~

\

\ #
On(A,B) On(B,C)

FINISH

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 11

