Introduction to Artificial Intelligence

Uncertainty

Chapter 14

Dieter Fox

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14

0-0

Bayes' Rule

Product rule $P(A \land B) = P(A|B)P(B) = P(B|A)P(A)$

$$\Rightarrow \text{ Bayes' rule } P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Why is this useful????

For assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Bayes' rule

Outline

- \(\) Independence
- Robot localization

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14 0-1

Normalization

given B=b, and suppose A has possible values $a_1\dots a_m$ Suppose we wish to compute a posterior distribution over A

We can apply Bayes' rule for each value of
$$A$$
:
$$P(A=a_1|B=b)=P(B=b|A=a_1)P(A=a_1)/P(B=b)$$

$$P(A=a_m|B=b) = P(B=b|A=a_m)P(A=a_m)/P(B=b)$$

Adding these up, and noting that $\sum_i P(A=a_i|B=b)=1$:

$$1/P(B=b) = 1/\sum_{i}^{i} P(B=b|A=a_{i})P(A=a_{i})$$

This is the **normalization factor**, constant w.r.t. i, denoted α :

$$\mathbf{P}(A|B=b) = \alpha \mathbf{P}(B=b|A)\mathbf{P}(A)$$

Typically compute an unnormalized distribution, normalize at end e.g., suppose $\mathbf{P}(B=b|A)\mathbf{P}(A)=\langle 0.4,0.2,0.2\rangle$

then
$$\mathbf{P}(A|B=b)=lpha\langle 0.4,0.2,0.2\rangle=rac{\langle 0.4,0.2,0.2\rangle}{0.4+0.2+0.2}=\langle 0.5,0.25,0.25\rangle$$

Application of Bayes' Rule

$$P(s|o) = \frac{P(o|s)P(s)}{P(o)} = \frac{P(o|s)P(s)}{\sum_{s} P(o|s)P(s)}$$

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14 0-4

Full joint distributions contd.

- 1) For any proposition ϕ defined on the random variables $\phi(w_i)$ is true or false
- 2) ϕ is equivalent to the disjunction of w_i s where $\phi(w_i)$ is true

Hence
$$P(\phi) = \sum_{\{w_i: \; \phi(w_i)\}} P(w_i)$$

I.e., the unconditional probability of any proposition is computable as the sum of entries from the full joint distribution

Conditional probabilities can be computed in the same way as a ratio:

$$P(\phi|\xi) = rac{P(\phi \wedge \xi)}{P(\xi)}$$

E.g.,

$$P(Cavity|Toothache) = \frac{P(Cavity \land Toothache)}{P(Toothache)} = \frac{0.04}{0.04 + 0.01} = 0.8$$

Full joint distributions

A **complete probability model** specifies every entry in the joint distribution for all the variables $\mathbf{X}=X_1,\ldots,X_n$ l.e., a probability for each possible world $X_1=x_1,\ldots,X_n=x_n$

E.g., suppose *Toothache* and *Cavity* are the random variables

Possible worlds are mutually exclusive $\Rightarrow P(w_1 \land w_2) = 0$ Possible worlds are exhaustive $\Rightarrow w_1 \lor \cdots \lor w_n$ is True

hence
$$\sum_i P(w_i) = 1$$

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14 0-5

Independence

Two random variables AB are (absolutely) independent iff

$$P(A|B) = P(A)$$
 or
$$P(A,B) = P(A|B)P(B) = P(A)P(B)$$

e.g., A and B are two coin tosses

If n Boolean variables are independent, the full joint is

$$\mathbf{P}(X_1,\dots,X_n) = \prod_i \mathbf{P}(X_i)$$
 hence can be specified by just n numbers

Absolute independence is a very strong requirement, seldom met

Conditional independence

Consider the dentist problem with three random variables: Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

- (1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)
- i.e., Catch is conditionally independent of Toothache given Cavity

The same independence holds if I haven't got a cavity:

(2) $P(Catch|Toothache, \neg Cavity) = P(Catch|\neg Cavity)$

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14 0-8

Robot localization with proximity sensors

What is $P(s \mid o)$??

Conditional independence contd.

Equivalent statements to

- (1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)
- (1a) P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
- (1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Full joint distribution can now be written as

 $\mathbf{P}(Toothache, Catch, Cavity) = \mathbf{P}(Toothache, Catch|Cavity)\mathbf{P}(Cavity)$ $= \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$

i.e., 2 + 2 + 1 = 5 independent numbers

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14

0-9

Robot localization with proximity sensors

What is $P(s \mid o)$??

$$P(s|o) = \frac{P(o|s)P(s)}{P(o)} = \frac{P(o|s)P(s)}{\sum_{s} P(o|s)P(s)}$$

What's the probability of a sensor scan?

How can we get $P(o \mid s)$??

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14 0-12

What's the probability of a sensor scan?

How can we get $P(o \mid s)$??

$$P(o \mid s) = P(o_1, o_2, \dots, o_n \mid s)$$

the robot's position Assumption: sensor beams are conditionally independent given the map and

$$\Rightarrow P(o_1, o_2, \dots, o_n \mid s) = P(o_1 \mid s) \dots P(o_n \mid s)$$

What's the probability of a sensor scan?

How can we get $P(o \mid s)$??

$$P(o \mid s) = P(o_1, o_2, \dots, o_n \mid s)$$

What's the probability of a sensor beam?

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14

0-13

cle in the map The sensor is either reflected by an unknown obstacle or by the next obsta-

 $P(d_i \mid s) = 1 - (1 - (1 - \sum_{j < i} P_u(d_j)) \ c_d \ P_m(d_i \mid s))) \cdot (1 - (1 - \sum_{j < i} P(d_j)) \ c_r)$

measured distance [cm]

Probability of a laser scan

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 14 0-16