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Bayes’ Rule

Chapter 14 0-0

Product rule P(A A B) = P(A|B)P(B) = P(B|A)P(A)

= Bayes’ rule P(A|B) = %
Why is this useful???

For assessing diagnostic probability from causal probability:

P(Effect|Cause)P(Cause)

P(Cause|Ef fect) = P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(S|M)P(M) _ 0.8 x 0.0001

P(M1S) = P(S) 0.1

= 0.0008

Note: posterior probability of meningitis still very small!
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Outline
¢ Bayes' rule
¢ Independence
{> Robot localization
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Normalization

Suppose we wish to compute a posterior distribution over A
given B =b, and suppose A has possible values a; .. .apn,

We can apply Bayes’ rule for each value of A:
P(A=a,1|B=b) = P(B=blA=a1)P(A=a;)/P(B=))

P(A=a,,|B=b) = P(B=blA=a,,)P(A=a,,)/P(B=b)
Adding these up, and noting that Mtug =q;|B=0b) =1:

H\wﬁmﬂs = H\M&wﬁmnv_\wﬂns.vwﬁ\wng&u
This is the normalization factor, constant w.r.t. 7, denoted «:
P(A|B=b) = aP(B=0bA)P(A)

Typically compute an unnormalized distribution, normalize at end
e.g., suppose P(B=0b|A)P(A) = (0.4,0.2,0.2)
then P(A|B=b) = (0.4,0.2,0.2) = (%2020 — (0.5,0.25, 0.25)
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Application of Bayes’ Rule
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Full joint distributions contd.

1) For any proposition ¢ defined on the random variables
o(w;) is true or false

2) ¢ is equivalent to the disjunction of w;s where ¢(w;) is true

Hence P(¢) = M?ﬁ &E:wﬁsv

l.e., the unconditional probability of any proposition is computable as the sum
of entries from the full joint distribution

Conditional probabilities can be computed in the same way as a ratio:

P(pA§)
P(gle) = 2 28)
E.g.,
. P(Cavity A\ Toothache 0.04
P(Cavity Toothache) = = P(Toothache) - 0.04+001 08
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Full joint distributions

A complete probability model specifies every entry in the joint distribution for
all the variables X = X,..., X,
l.e., a probability for each possible world X; =z1,..., X, =z,

E.g., suppose Toothache and Cavity are the random variables:
_ Toothache =true Toothache= false

0.04 0.06
0.01 0.89

Cavity = true
Cavity = false

Possible worlds are mutually exclusive = P(w; Awy) =0
Possible worlds are exhaustive = wy V-V w, is True

hence Mus.w?:.v =1
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Independence

Two random variables A B are (absolutely) independent iff
P(A|B) =P(A)
or P(A,B) = P(A|B)P(B) = P(A)P(B)
e.g., A and B are two coin tosses
If n Boolean variables are independent, the full joint is
P(Xq,...,X,) = :Luﬁnv

hence can be specified by just n numbers

Absolute independence is a very strong requirement, seldom met
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Conditional independence

Consider the dentist problem with three random variables:
Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has 22 — 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend on
whether | have a toothache:

(1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)
i.e., Catch is conditionally independent of T'oothache given Cavity

The same independence holds if | haven’t got a cavity:
(2) P(Catch|Toothache, ~Cavity) = P(Catch|-Cavity)
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Robot localization with proximity sensors

What is P(s | 0)??

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 14 0-10

Conditional independence contd.

Equivalent statements to
(1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)

(1a) P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Full joint distribution can now be written as
P(Toothache, Catch, Cavity) = P(Toothache, Catch|Cavity)P (Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
i.e., 2+ 2+ 1 =5 independent numbers

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 14 0-9

Robot localization with proximity sensors

What is P(s | 0)??

o)~ PODPG PP
P(o) 2.5 P(ols)P(s)
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What’s the probability of a sensor scan?

How can we get P(o | s)??
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What’s the probability of a sensor scan?

How can we get P(o | s)??
P(o| s) = P(01,02,...,0, | )

Assumption: sensor beams are conditionally independent given the map and
the robot’s position

= P(01,02,...,0n|s) =P(o1|s)...P(o, | $)
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What’s the probability of a sensor scan?

How can we get P(o | s)??

wﬂgi,mV”wAQH“Qm“...“QSi%u

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 14 0-13

What’s the probability of a sensor beam?

The sensor is either reflected by an unknown obstacle or by the next obsta-
clein the map

P(di|s) =1- (1= (1=, Puld))) ca Pm(di | 5)))- (1= (1=23;; P(dy)) cr)
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Probability of a laser scan
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