Introduction to Artificial Intelligence

Uncertainty

Chapter 14

Dieter Fox

Outline

- ♦ Bayes' rule
- ♦ Independence
- Robot localization

Bayes' Rule

Product rule $P(A \land B) = P(A|B)P(B) = P(B|A)P(A)$

$$\Rightarrow$$
 Bayes' rule $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Why is this useful???

For assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Normalization

given B=b, and suppose A has possible values $a_1 \dots a_m$ Suppose we wish to compute a posterior distribution over A

We can apply Bayes' rule for each value of A:

$$P(A=a_1|B=b) = P(B=b|A=a_1)P(A=a_1)/P(B=b)$$

•

$$P(A = a_m | B = b) = P(B = b | A = a_m)P(A = a_m)/P(B = b)$$

Adding these up, and noting that $\sum_{i} P(A = a_i | B = b) = 1$:

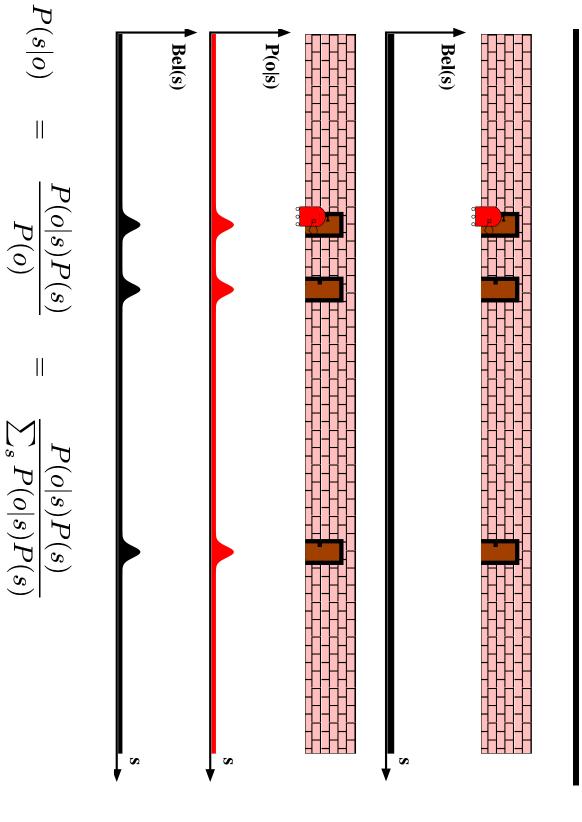
$$1/P(B=b) = 1/\sum_{i}^{b} P(B=b|A=a_{i})P(A=a_{i})$$

This is the **normalization factor**, constant w.r.t. i, denoted α :

$$\mathbf{P}(A|B=b) = \alpha \mathbf{P}(B=b|A)\mathbf{P}(A)$$

Typically compute an unnormalized distribution, normalize at end e.g., suppose $P(B = b|A)P(A) = \langle 0.4, 0.2, 0.2 \rangle$ then $\mathbf{P}(A|B=b)=\alpha\langle 0.4,0.2,0.2\rangle=\frac{\langle 0.4,0.2,0.2\rangle}{0.4+0.2+0.2}=\langle 0.5,0.25,0.25\rangle$

Application of Bayes' Rule



Full joint distributions

all the variables $\mathbf{X} = X_1, \dots, X_n$ A complete probability model specifies every entry in the joint distribution for

l.e., a probability for each possible world $X_1=x_1,\ldots,X_n=x_n$

E.g., suppose *Toothache* and *Cavity* are the random variables:

$Cavity = false \mid$	Cavity = true	
0.01	0.04	Toothache = true
0.89	0.06	Toothache = false

Possible worlds are mutually exclusive $\Rightarrow P(w_1 \land w_2) = 0$ Possible worlds are exhaustive $\Rightarrow w_1 \lor \cdots \lor w_n$ is Truehence $\sum_i P(w_i) = 1$

Full joint distributions contd

- 1) For any proposition ϕ defined on the random variables $\phi(w_i)$ is true or false
- 2) ϕ is equivalent to the disjunction of w_i s where $\phi(w_i)$ is true

Hence
$$P(\phi) = \sum_{\{w_i:\; \phi(w_i)\}} P(w_i)$$

of entries from the full joint distribution I.e., the unconditional probability of any proposition is computable as the sum

Conditional probabilities can be computed in the same way as a ratio:

$$P(\phi|\xi) = \frac{P(\phi \land \xi)}{P(\xi)}$$

E.g.,

$$P(Cavity|Toothache) = \frac{P(Cavity \land Toothache)}{P(Toothache)} = \frac{0.04}{0.04 + 0.01} = 0.8$$

Independence

Two random variables $A\ B$ are (absolutely) independent iff

$$P(A|B) = P(A)$$
 or
$$P(A,B) = P(A|B)P(B) = P(A)P(B)$$

e.g., A and B are two coin tosses

If n Boolean variables are independent, the full joint is

$$\mathbf{P}(X_1,\ldots,X_n) = \mathbf{I} \mathbf{I}_i \mathbf{P}(X_i)$$

hence can be specified by just n numbers

Absolute independence is a very strong requirement, seldom met

Conditional independence

Consider the dentist problem with three random variables Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has $2^3 - 1 = 7$ independent entries

whether I have a toothache: If I have a cavity, the probability that the probe catches in it doesn't depend on

(1)
$$P(Catch|Toothache, Cavity) = P(Catch|Cavity)$$

i.e., Catch is conditionally independent of Toothache given Cavity

The same independence holds if I haven't got a cavity:

(2)
$$P(Catch|Toothache, \neg Cavity) = P(Catch|\neg Cavity)$$

Conditional independence contd

Equivalent statements to

(1)
$$P(Catch|Toothache, Cavity) = P(Catch|Cavity)$$

(1a)
$$P(Toothache|Catch, Cavity) = P(Toothache|Cavity)$$

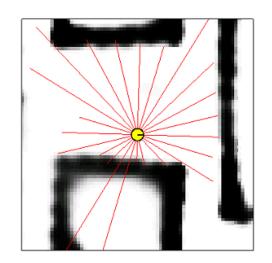
(1b)
$$P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)$$

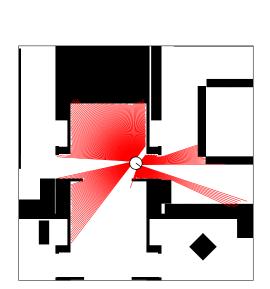
Full joint distribution can now be written as

$$\mathbf{P}(Toothache, Catch, Cavity) = \mathbf{P}(Toothache, Catch|Cavity)\mathbf{P}(Cavity)$$
$$= \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$$

i.e., 2 + 2 + 1 = 5 independent numbers

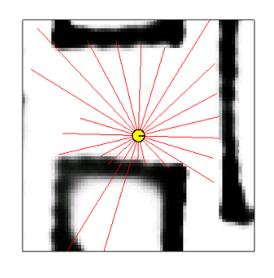
Robot localization with proximity sensors

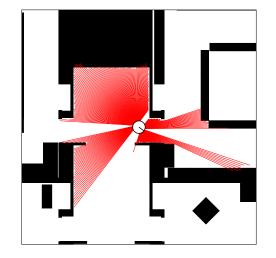




What is $P(s \mid o)$??

Robot localization with proximity sensors

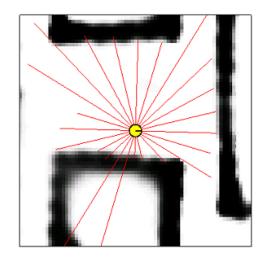




What is $P(s \mid o)$??

$$P(s|o) = \frac{P(o|s)P(s)}{P(o)} = \frac{P(o|s)P(s)}{\sum_{s} P(o|s)P(s)}$$

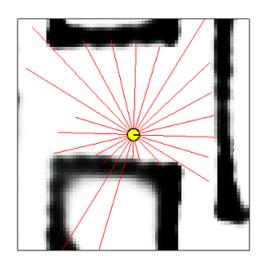
What's the probability of a sensor scan?

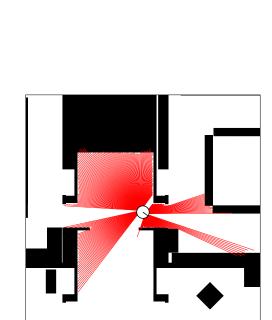


How can we get $P(o \mid s)$??



What's the probability of a sensor scan?

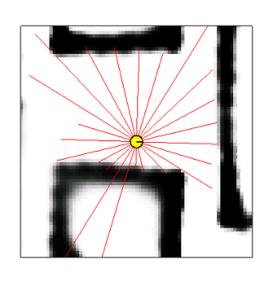


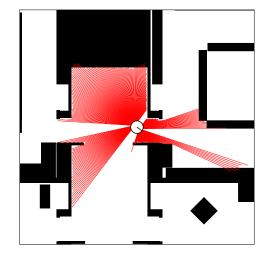


How can we get $P(o \mid s)$??

$$P(o \mid s) = P(o_1, o_2, \dots, o_n \mid s)$$

What's the probability of a sensor scan?





How can we get $P(o \mid s)$??

$$P(o \mid s) = P(o_1, o_2, \dots, o_n \mid s)$$

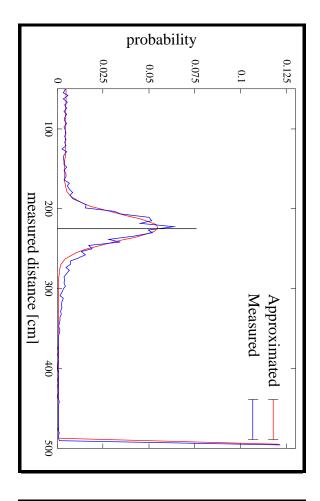
the robot's position Assumption: sensor beams are conditionally independent given the map and

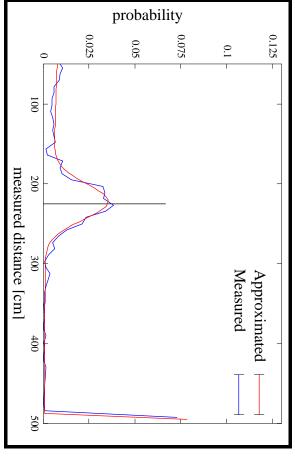
$$\Rightarrow P(o_1, o_2, ..., o_n \mid s) = P(o_1 \mid s) ... P(o_n \mid s)$$

What's the probability of a sensor beam?

cle in the map The sensor is either reflected by an **unknown obstacle** or by the **next obsta-**

$$P(d_i \mid s) = 1 - (1 - (1 - \sum_{j < i} P_u(d_j)) \ c_d \ P_m(d_i \mid s))) \cdot (1 - (1 - \sum_{j < i} P(d_j)) \ c_r)$$





Probability of a laser scan

