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Bayes’ Rule

Product rule P(AANB) = P(A|B)P(B) = P(B|A)P(A)

P(B|A)P(A)
P(B)

= Bayes’ rule P(A|B) =

Why is this useful???

For assessing diagnostic probability from causal probability:

P(Ef fect|Cause)P(Cause)
P(Ef fect)

P(Cause|E f fect) =
E.g., let M be meningitis, S be stiff neck:

P(S|M)P(M) 0.8 x 0.0001

P(M|S) = P(S) 0.1

= 0.0008

Note: posterior probability of meningitis still very small!
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Normalization

Suppose we wish to compute a posterior distribution over A
given B =b, and suppose A has possible values a; .. .a,,

We can apply Bayes’ rule for each value of A:

P(A=an|B=b)=P(B=blA=ay)P(A=a,,)/P(B=>0)
Adding these up, and noting that M‘L,Lugnglm =b) = 1:

1/P(B=b) = H\MULUQ.@ =blA=a;)P(A=a;)
This is the normalization factor, constant w.r.t. 7, denoted «:
P(A|B=0b) = aP(B=0bA)P(A)

Typically compute an unnormalized distribution, normalize at end
e.g., suppose P(B=0b|A)P(A) = (0.4,0.2,0.2)

then P(A|B=b) = a(0.4,0.2,0.2) = 3302020 = (0.5,0.25, 0.25)
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Application of Bayes’ Rule
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Full joint distributions

A complete probability model specifies every entry in the joint distribution for
all the variables X = X;,..., X,

l.e., a probability for each possible world X1 =z4,..., X,, =z,

E.g., suppose Toothache and Cavity are the random variables:

Toothache =true Toothache= false

Cavity =true
Cavity = false

0.04 0.06
0.01 0.89

Possible worlds are mutually exclusive = P(w; Aws) =0
Possible worlds are exhaustive = wiV:---Vw, IS True

hence MU%QS.V =1
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Full joint distributions contd.

1) For any proposition ¢ defined on the random variables
¢(w;) is true or false

2) ¢ is equivalent to the disjunction of w;s where ¢(w;) is true

Hence P(¢) = MTS“ o(w;)} P (wi)

l.e., the unconditional probability of any proposition is computable as the sum
of entries from the full joint distribution

Conditional probabilities can be computed in the same way as a ratio:

P(¢ N§)
P —
916 = 55
E.g.,
. P(Cavity A\ Toothache 0.04
P(Cavity|Toothache) = | P(Toothache) | T 0.04+001 08
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Independence

Two random variables A B are (absolutely) independent iff
P(A|B) = P(A)
or P(A,B) = P(A|B)P(B) = P(A)P(B)
e.g., A and B are two coin tosses

If n Boolean variables are independent, the full joint is

P(Xy,...,Xp) = ——@.wﬁm@.v
hence can be specified by just n numbers

Absolute independence is a very strong requirement, seldom met
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Conditional independence

Consider the dentist problem with three random variables:
Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has 23 — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’t depend on
whether | have a toothache:

(1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)
l.e., Catch is conditionally independent of T'oothache given Cavity

The same independence holds if | haven’t got a cavity:
(2) P(Catch|Toothache, ~Cavity) = P(Catch|-Cavity)
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Conditional independence contd.

Equivalent statements to
(1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)

(1a) P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Full joint distribution can now be written as
P(Toothache, Catch, Cavity) = P(Toothache, Catch|Cavity)P (Cavity)
= P (T oothache|Cavity)P(Catch|Cavity)P(Cavity)
l.e., 2+ 2 + 1 =5 independent numbers
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Robot localization with proximity sensors

What is P(s | 0)??
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Robot localization with proximity sensors

What is P(s | 0)??

P(o|s)P(s) P(ols)P(s)

Plslo) = =y = 3. P(ofs)P(s)
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What’s the probability of a sensor scan?

How can we get P(o | s)??
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What’s the probability of a sensor scan?

How can we get P(o | s)??

wAOimv”wAQHquu...“Q\;imv
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What’s the probability of a sensor scan?

How can we get P(o | s)??
wAOimv”wAQHquu...“Q\;imv

Assumption: sensor beams are conditionally independent given the map and
the robot’s position

= P(01,02,...,0n,|8)=P(o1|s)...P(o, | s)
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What’s the probability of a sensor beam?

The sensor is either reflected by an unknown obstacle or by the next obsta-

cle in the map

P(di|s) =1-(1— (1=, Puldy)) ca Pm(di | 5)))- (1= (1=3_;; P(dj)) cr)
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Probability of a laser scan

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 14 0-16



