Introduction to Artificial Intelligence

Informed search algorithms

Chapter 4, Sections 1–2, 4

 $Dieter\ Fox$

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-0

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4

0-1

Review: General search

function General-Search (problem, Queuing-Fn) returns a solution, or failure $nodes \leftarrow Make-Queue(Make-Node(Initial-State[problem]))$

if nodes is empty then return failure

 $node \leftarrow Remove-Front(nodes)$

 $nodes \leftarrow \text{Queuing-Fn}(nodes, \text{Expand}(node, \text{Operators}[problem]))$ if GOAL-TEST[problem] applied to STATE(node) succeeds then return node

end

A strategy is defined by picking the order of node expansion

Outline

- Best-first search
- ♦ A* search
- ♦ Heuristics
- Hill-climbing
- Simulated annealing

Best-first search

Idea: use an evaluation function for each node estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

QueueingFn = insert successors in decreasing order of desirability

Special cases:

greedy search A* search

Romania with step costs in km

Rimnicu Vilcea Sibiu Lugoj Mehadia Neamt Oradea Fagaras Giurgiu Hirsova Pitesti Craiova Dobreta **Eforie** Bucharest Timisoara

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-4

Greedy search example

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to goal

E.g., $h_{\mathrm{SLD}}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-5

Greedy search example

Greedy search example

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-8

Properties of greedy search

Complete??

Time??

Space??

Optimal??

Greedy search example

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-9

Properties of greedy search

Complete: No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

Time: $O(b^m)$, but a good heuristic can give dramatic improvement

Space: $O(b^m)$ —keeps all nodes in memory

Optimal: No

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = {\rm cost} \ {\rm so} \ {\rm far} \ {\rm to} \ {\rm reach} \ n$ $h(n) = {\rm estimated} \ {\rm cost} \ {\rm to} \ {\rm goal} \ {\rm from} \ n$

f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n.

E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Chapter 4, Sections 1-2, 4 0-12

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4

0-13

A^* search example

 ${f A}^*$ search example

${f A}^*$ search example

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-16

${f A}^*$ search example

${f A}^*$ search example

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-17

Optimality of A^{*}

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$(G_2) = g(G_2)$$

since
$$h(G_2) = 0$$

$$> g(G_1)$$

 $\geq f(n)$

since
$$G_2$$
 is suboptimal

since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

${\bf Properties \ of \ A^*}$

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-20

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total **Manhattan** distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

 $h_2(S) =: 2+3+3+2+4+2+0+2 = 18$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

 $h_1(S) = ??$

 $h_2(S) = ??$

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-21

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS = too many nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes

Relaxed problems

solution cost of a relaxed version of the problem Admissible heuristics can be derived from the exact

 $h_1(n)$ gives the shortest solution If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then

 $h_2(n)$ gives the shortest solution If the rules are relaxed so that a tile can move to any adjacent square, then

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-24

Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

lterative improvement algorithms

the goal state itself is the solution In many optimization problems, path is irrelevant;

Then state space = set of "complete" configurations; or, find configuration satisfying constraints, e.g., n-queens find optimal configuration, e.g., TSP

keep a single "current" state, try to improve it In such cases, can use iterative improvement algorithms:

Constant space, suitable for online as well as offline search

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4

0-25

Example: n-queens

row, column, or diagonal Put n queens on an $n \times n$ board with no two queens on the same

${ m Hill\text{-}climbing}$ (or ${ m gradient}$ ascent/descent)

"Like climbing Everest in thick fog with amnesia"

```
function \operatorname{Hill-Climbing}(\mathit{problem}) returns a solution state
                                                                                                                                                                                                                       current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
                                                                                                                                                                                                                                                                                                                                                                                                                                inputs: problem, a problem
                                                                                                                                                                                                                                                                                                                                                                     local variables: current, a node
current \leftarrow next
                                           \textbf{if Value}[\textbf{next}] < \textbf{Value}[\textbf{current}] \ \textbf{then return} \ \textit{current}
                                                                                                      next \leftarrow a highest-valued successor of current
                                                                                                                                                                                                                                                                                                                      next, a node
```

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4 0-28

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and trequency

```
function Simulated-Annealing (problem, schedule) returns a solution state
                                                                                                                                                                                                                                                                                                                                                                   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        inputs: problem, a problem
                                                                                                                                                                                                                                                                                                                         for t \leftarrow 1 to \infty do
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      local variables: current, a node
                                                                                                        \Delta E \leftarrow Value[next] - Value[current]
                                                                                                                                                            next \leftarrow a randomly selected successor of current
                                                                                                                                                                                                             if T=0 then return current
else \mathit{current} \leftarrow \mathit{next} only with probability e^{\Delta E/T}
                                                if \Delta E > 0 then current \leftarrow next
                                                                                                                                                                                                                                                              T \!\leftarrow\! schedule[t]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       schedule, a mapping from time to "temperature"
                                                                                                                                                                                                                                                                                                                                                                                                                    T, a "temperature" controlling the probability of downward steps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        next, a node
```

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 4, Sections 1-2, 4

Properties of simulated annealing

T decreased slowly enough \Longrightarrow always reach best state

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc