Introduction to Artificial Intelligence ## Informed search algorithms Chapter 4, Sections 1–2, 4 $Dieter\ Fox$ Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-0 Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-1 ## Review: General search function General-Search (problem, Queuing-Fn) returns a solution, or failure $nodes \leftarrow Make-Queue(Make-Node(Initial-State[problem]))$ if nodes is empty then return failure $node \leftarrow Remove-Front(nodes)$ $nodes \leftarrow \text{Queuing-Fn}(nodes, \text{Expand}(node, \text{Operators}[problem]))$ if GOAL-TEST[problem] applied to STATE(node) succeeds then return node end A strategy is defined by picking the order of node expansion #### Outline - Best-first search - ♦ A* search - ♦ Heuristics - Hill-climbing - Simulated annealing #### Best-first search Idea: use an evaluation function for each node estimate of "desirability" ⇒ Expand most desirable unexpanded node #### Implementation: QueueingFn = insert successors in decreasing order of desirability Special cases: greedy search A* search ## Romania with step costs in km Rimnicu Vilcea Sibiu Lugoj Mehadia Neamt Oradea Fagaras Giurgiu Hirsova Pitesti Craiova Dobreta **Eforie** Bucharest Timisoara Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-4 ## Greedy search example #### Greedy search Evaluation function h(n) (heuristic) = estimate of cost from n to goal E.g., $h_{\mathrm{SLD}}(n) = \text{straight-line distance from } n \text{ to Bucharest}$ Greedy search expands the node that appears to be closest to goal Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-5 ## Greedy search example ## Greedy search example Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-8 ## Properties of greedy search #### Complete?? Time?? Space?? Optimal?? ## Greedy search example Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-9 ## Properties of greedy search Complete: No-can get stuck in loops, e.g., $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$ Complete in finite space with repeated-state checking **Time**: $O(b^m)$, but a good heuristic can give dramatic improvement **Space**: $O(b^m)$ —keeps all nodes in memory Optimal: No Idea: avoid expanding paths that are already expensive Evaluation function f(n) = g(n) + h(n) $g(n) = {\rm cost} \ {\rm so} \ {\rm far} \ {\rm to} \ {\rm reach} \ n$ $h(n) = {\rm estimated} \ {\rm cost} \ {\rm to} \ {\rm goal} \ {\rm from} \ n$ f(n) = estimated total cost of path through n to goal A* search uses an admissible heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n. E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance Theorem: A* search is optimal Chapter 4, Sections 1-2, 4 0-12 Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-13 ## A^* search example ${f A}^*$ search example ### ${f A}^*$ search example Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-16 ### ${f A}^*$ search example ## ${f A}^*$ search example Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-17 #### Optimality of A^{*} Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 . $$(G_2) = g(G_2)$$ since $$h(G_2) = 0$$ $$> g(G_1)$$ $\geq f(n)$ since $$G_2$$ is suboptimal since h is admissible Since $f(G_2) > f(n)$, A* will never select G_2 for expansion #### ${\bf Properties \ of \ A^*}$ **Complete??** Yes, unless there are infinitely many nodes with $f \leq f(G)$ **Time??** Exponential in [relative error in $h \times$ length of soln.] Space?? Keeps all nodes in memory **Optimal??** Yes—cannot expand f_{i+1} until f_i is finished Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-20 ## Admissible heuristics E.g., for the 8-puzzle: $h_1(n)$ = number of misplaced tiles $h_2(n)$ = total **Manhattan** distance (i.e., no. of squares from desired location of each tile) Start State Goal State $h_2(S) =: 2+3+3+2+4+2+0+2 = 18$ ## Admissible heuristics E.g., for the 8-puzzle: $h_1(n)$ = number of misplaced tiles $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile) Start State Goal State $h_1(S) = ??$ $h_2(S) = ??$ Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-21 #### Dominance If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search Typical search costs: $$d=14$$ IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS = too many nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes #### Relaxed problems solution cost of a relaxed version of the problem Admissible heuristics can be derived from the exact $h_1(n)$ gives the shortest solution If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_2(n)$ gives the shortest solution If the rules are relaxed so that a tile can move to any adjacent square, then Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-24 # Example: Travelling Salesperson Problem Find the shortest tour that visits each city exactly once ## lterative improvement algorithms the goal state itself is the solution In many optimization problems, path is irrelevant; Then state space = set of "complete" configurations; or, find configuration satisfying constraints, e.g., n-queens find optimal configuration, e.g., TSP keep a single "current" state, try to improve it In such cases, can use iterative improvement algorithms: Constant space, suitable for online as well as offline search Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-25 ## Example: n-queens row, column, or diagonal Put n queens on an $n \times n$ board with no two queens on the same # ${ m Hill\text{-}climbing}$ (or ${ m gradient}$ ascent/descent) "Like climbing Everest in thick fog with amnesia" ``` function \operatorname{Hill-Climbing}(\mathit{problem}) returns a solution state current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) inputs: problem, a problem local variables: current, a node current \leftarrow next \textbf{if Value}[\textbf{next}] < \textbf{Value}[\textbf{current}] \ \textbf{then return} \ \textit{current} next \leftarrow a highest-valued successor of current next, a node ``` Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 0-28 ### Simulated annealing Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and trequency ``` function Simulated-Annealing (problem, schedule) returns a solution state current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) inputs: problem, a problem for t \leftarrow 1 to \infty do local variables: current, a node \Delta E \leftarrow Value[next] - Value[current] next \leftarrow a randomly selected successor of current if T=0 then return current else \mathit{current} \leftarrow \mathit{next} only with probability e^{\Delta E/T} if \Delta E > 0 then current \leftarrow next T \!\leftarrow\! schedule[t] schedule, a mapping from time to "temperature" T, a "temperature" controlling the probability of downward steps next, a node ``` ## Hill-climbing contd. Problem: depending on initial state, can get stuck on local maxima Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1-2, 4 ## Properties of simulated annealing T decreased slowly enough \Longrightarrow always reach best state Is this necessarily an interesting guarantee?? Devised by Metropolis et al., 1953, for physical process modelling Widely used in VLSI layout, airline scheduling, etc