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Outline

♦ Best-first search

♦ A∗ search

♦ Heuristics

♦ Hill-climbing

♦ Simulated annealing
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Review: General search

function General-Search( problem, Queuing-Fn) returns a solution, or failure

nodes←Make-Queue(Make-Node(Initial-State[problem]))
loop do

if nodes is empty then return failure
node←Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes←Queuing-Fn(nodes, Expand(node, Operators[problem]))

end

A strategy is defined by picking the order of node expansion
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Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation :
QueueingFn = insert successors in decreasing order of desirability

Special cases:
greedy search
A∗ search
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Romania with step costs in km
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Greedy search

Evaluation function h(n) (heuristic )
= estimate of cost from n to goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal
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Greedy search example
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Greedy search example

Arad
�

366

Zerind
�

Sibiu Timisoara
�

374 253 329

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-7



Greedy search example
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Greedy search example
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Properties of greedy search

Complete ??

Time??

Space??

Optimal ??
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Properties of greedy search

Complete : No–can get stuck in loops, e.g.,
Iasi→ Neamt→ Iasi→ Neamt→

Complete in finite space with repeated-state checking

Time : O(bm), but a good heuristic can give dramatic improvement

Space : O(bm)—keeps all nodes in memory

Optimal : No
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A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.

E.g., hSLD(n) never overestimates the actual road distance

Theorem : A∗ search is optimal
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A∗ search example
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A∗ search example
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A∗ search example
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A∗ search example
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A∗ search example
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A∗ search example
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Optimality of A∗

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2
�

Start

f(G2) = g(G2) since h(G2) = 0
> g(G1) since G2 is suboptimal
≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion
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Properties of A∗

Complete ?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal ?? Yes—cannot expand fi+1 until fi is finished
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Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)
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h1(S) =??
h2(S) =??
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Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance
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h1(S) =: 7
h2(S) =: 2+3+3+2+4+2+0+2 = 18
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Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS = too many nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes
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Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then
h2(n) gives the shortest solution
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Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-25



Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once
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Example: n-queens

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal
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Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing( problem) returns a solution state
inputs: problem, a problem
local variables: current, a node

next, a node

current←Make-Node(Initial-State[problem])
loop do

next← a highest-valued successor of current
if Value[next] < Value[current] then return current
current←next

end
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Hill-climbing contd.

Problem : depending on initial state, can get stuck on local maxima

value

states

global maximum

local maximum

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-29



Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling the probability of downward steps

current←Make-Node(Initial-State[problem])
for t← 1 to∞ do

T← schedule[t]
if T=0 then return current
next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current←next
else current←next only with probability e∆E/T
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Properties of simulated annealing

T decreased slowly enough =⇒ always reach best state

Is this necessarily an interesting guarantee ??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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