
Introduction to Artificial Intelligence

Informed search algorithms

Chapter 4, Sections 1–2, 4

Dieter Fox

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-0

Outline

♦ Best-first search

♦ A∗ search

♦ Heuristics

♦ Hill-climbing

♦ Simulated annealing

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-1

Review: General search

function General-Search(problem, Queuing-Fn) returns a solution, or failure

nodes←Make-Queue(Make-Node(Initial-State[problem]))
loop do

if nodes is empty then return failure
node←Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes←Queuing-Fn(nodes, Expand(node, Operators[problem]))

end

A strategy is defined by picking the order of node expansion

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-2

Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation :
QueueingFn = insert successors in decreasing order of desirability

Special cases:
greedy search
A∗ search

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-3

Romania with step costs in km

Bucharest
�

Giurgiu
�

Urziceni
�

Hirsova
�

Eforie
�

Neamt
�

Oradea
�

Zerind
�

Arad
�

Timisoara
	

Lugoj

Mehadia
�

Dobreta
�
Craiova

Sibiu

Fagaras
�

Pitesti
�

Rimnicu Vilcea
�

Vaslui
�

Iasi
�

Straight−line distance
�

to Bucharest

 0
160
242

�

161

77
�

151

241
�

366
�

193

178

253
�

329
�

80
199

244
�

380
�

226
�

234
�

374
�

98
�

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71
�

75
�

118

111

70
�

75
�

120

151

140

99
�

80
�

97
�

101

211
�

138

146 85
�

90
�

98
�

142

92
�

87
�

86
�

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-4

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-5

Greedy search example

Arad
�

366

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-6

Greedy search example

Arad
�

366

Zerind
�

Sibiu Timisoara
�

374 253 329

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-7

Greedy search example

Arad
�

366

Zerind
�

Sibiu Timisoara
�

374 253 329

Arad
�

Oradea
� Rimnicu

 VilceaFagaras

366 380 178 193

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-8

Greedy search example

Arad
�

366

Zerind
�

Sibiu Timisoara
�

374 253 329

Arad
�

Oradea
� Rimnicu

 VilceaFagaras

366 380 178 193

Sibiu Bucharest

253 0

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-9

Properties of greedy search

Complete ??

Time??

Space??

Optimal ??

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-10

Properties of greedy search

Complete : No–can get stuck in loops, e.g.,
Iasi→ Neamt→ Iasi→ Neamt→

Complete in finite space with repeated-state checking

Time : O(bm), but a good heuristic can give dramatic improvement

Space : O(bm)—keeps all nodes in memory

Optimal : No

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-11

A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.

E.g., hSLD(n) never overestimates the actual road distance

Theorem : A∗ search is optimal

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-12

A∗ search example

Arad
�

366

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-13

A∗ search example

Zerind
�

Sibiu Timisoara
�

449 393 447

75 140 118

Arad
�

366

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-14

A∗ search example

151

Arad
�

Oradea
� Rimnicu

 VilceaFagaras

646 526 417 413

140 99
�

80
�

Zerind
�

Sibiu Timisoara
�

449 393 447

75 140 118

Arad
�

366

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-15

A∗ search example

151

Arad
�

366

Zerind
�

Sibiu Timisoara
�

Arad
�

Oradea
� Rimnicu

 VilceaFagaras

449 393 447

646 526 417 413

526 415 553
Craiova Pitesti Sibiu

75 140 118

140 99
�

80
�

146 97
�

80
�

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-16

A∗ search example

151

Arad
�

366

Zerind
�

Sibiu Timisoara
�

Arad
�

Oradea
� Rimnicu

 VilceaFagaras

449 393 447

646 526 417 413

526 415 553

607 615 418

Craiova Pitesti Sibiu

Rimnicu
 Vilcea Craiova Bucharest

75 140 118

140 99
�

80
�

146 97
�

80
�

97
�

138 101

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-17

A∗ search example

151

Arad
�

366

Zerind
�

Sibiu Timisoara
�

Arad
�

Oradea
� Rimnicu

 VilceaFagaras

Sibiu Bucharest

449 393 447

646 526 417 413

591 450 526 415 553

607 615 418

Craiova Pitesti Sibiu

Rimnicu
 Vilcea Craiova Bucharest

75 140 118

140 99
�

80
�

99
�

211
�

146 97
�

80
�

97
�

138 101

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-18

Optimality of A∗

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2
�

Start

f(G2) = g(G2) since h(G2) = 0
> g(G1) since G2 is suboptimal
≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-19

Properties of A∗

Complete ?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal ?? Yes—cannot expand fi+1 until fi is finished

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-20

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State
�

Goal State
�

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

h1(S) =??
h2(S) =??

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-21

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State
�

Goal State
�

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

h1(S) =: 7
h2(S) =: 2+3+3+2+4+2+0+2 = 18

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-22

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS = too many nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-23

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then
h2(n) gives the shortest solution

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-24

Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-25

Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-26

Example: n-queens

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-27

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a solution state
inputs: problem, a problem
local variables: current, a node

next, a node

current←Make-Node(Initial-State[problem])
loop do

next← a highest-valued successor of current
if Value[next] < Value[current] then return current
current←next

end

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-28

Hill-climbing contd.

Problem : depending on initial state, can get stuck on local maxima

value

states

global maximum

local maximum

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-29

Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling the probability of downward steps

current←Make-Node(Initial-State[problem])
for t← 1 to∞ do

T← schedule[t]
if T=0 then return current
next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current←next
else current←next only with probability e∆E/T

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-30

Properties of simulated annealing

T decreased slowly enough =⇒ always reach best state

Is this necessarily an interesting guarantee ??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Based on AIMA Slides c©S. Russell and P. Norvig, 1998 Chapter 4, Sections 1–2, 4 0-31

