Introduction to Artificial Intelligence

Informed search algorithms

Chapter 4, Sections 1–2, 4

Dieter Fox

Outline

- \diamond Best-first search
- \diamond A* search
- \diamond Heuristics
- \diamond Hill-climbing
- $\diamondsuit\,$ Simulated annealing

Review: General search

```
function GENERAL-SEARCH( problem, QUEUING-FN) returns a solution, or failure
nodes ← MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
loop do
    if nodes is empty then return failure
    node ← REMOVE-FRONT(nodes)
    if GOAL-TEST[problem] applied to STATE(node) succeeds then return node
    nodes ← QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))
end
```

A strategy is defined by picking the order of node expansion

Idea: use an *evaluation function* for each node – estimate of "desirability"

 \Rightarrow Expand most desirable unexpanded node

Implementation:

QUEUEINGFN = insert successors in decreasing order of desirability

Special cases:

greedy search A* search

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Romania with step costs in km

Evaluation function h(n) (heuristic) = estimate of cost from n to goal

E.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Properties of greedy search

Complete??

Time??

Space??

Optimal??

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Properties of greedy search

Complete: No–can get stuck in loops, e.g., Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking

Time: $O(b^m)$, but a good heuristic can give dramatic improvement

Space: $O(b^m)$ —keeps all nodes in memory

Optimal: No

\mathbf{A}^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach nh(n) = estimated cost to goal from nf(n) = estimated total cost of path through n to goal

A* search uses an *admissible* heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n.

E.g., $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

\mathbf{A}^* search example

A^* search example

A^* search example

A^* search example

A^{*} search example

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

A^{*} search example

Optimality of A^*

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let *n* be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2) \qquad \text{since } h(G_2) = 0$$

> $g(G_1) \qquad \text{since } G_2 \text{ is suboptimal}$
$$\geq f(n) \qquad \text{since } h \text{ is admissible}$$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

 $h_1(S) =??$ $h_2(S) =??$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

 $h_1(S) =: 7$ $h_2(S) =: 2+3+3+2+4+2+0+2 = 18$

Dominance

If $h_2(n) \ge h_1(n)$ for all *n* (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

 $\begin{array}{ll} d = 14 & {\sf IDS} = 3,473,941 \mbox{ nodes} \\ {\sf A}^*(h_1) = 539 \mbox{ nodes} \\ {\sf A}^*(h_2) = 113 \mbox{ nodes} \\ d = 24 & {\sf IDS} = \mbox{ too many nodes} \\ {\sf A}^*(h_1) = 39,135 \mbox{ nodes} \\ {\sf A}^*(h_2) = 1,641 \mbox{ nodes} \\ \end{array}$

Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move *anywhere*, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to *any adjacent square*, then $h_2(n)$ gives the shortest solution

Iterative improvement algorithms

In many optimization problems, *path* is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find *optimal* configuration, e.g., TSP or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use *iterative improvement* algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

Problem: depending on initial state, can get stuck on local maxima

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
  inputs: problem, a problem
             schedule, a mapping from time to "temperature"
  local variables: current, a node
                       next, a node
                       T, a "temperature" controlling the probability of downward steps
  current \leftarrow Make-Node(INITIAL-STATE[problem])
  for t \leftarrow 1 to \infty do
       T \leftarrow schedule[t]
       if T=0 then return current
       next \leftarrow a randomly selected successor of current
       \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
       if \Delta E > 0 then current \leftarrow next
       else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing

T decreased slowly enough \Longrightarrow always reach best state

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.