Introduction to Artificial Intelligence

Informed search algorithms

Chapter 4, Sections 1-2, 4

Dieter Fox

Outline

\diamond Best-first search
$\diamond A^{*}$ search
\diamond Heuristics
\diamond Hill-climbing
\diamond Simulated annealing

Review: General search

```
function General-SEarch(problem, Queuing-Fn) returns a solution, or failure
nodes}\leftarrowMAke-Queue(Make-Node(Initial-State[problem]))
loop do
    if nodes is empty then return failure
    node}\leftarrow\mathrm{ Remove-Front(nodes)
    if Goal-Test[problem] applied to State(node) succeeds then return node
    nodes \leftarrowQueuing-Fn(nodes, Expand(node, Operators[problem]))
end
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
\Rightarrow Expand most desirable unexpanded node

Implementation:

QueueingFn = insert successors in decreasing order of desirability

Special cases:
greedy search A* search

Romania with step costs in km

Straight-line distance
to Bucharest

Arad
366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

Greedy search

Evaluation function $h(n)$ (heuristic)
= estimate of cost from n to goal
E.g., $h_{\text {SLD }}(n)=$ straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Greedy search example

Greedy search example

Greedy search example

Greedy search example

Complete??

Time??

Space??

Optimal??

Properties of greedy search

Complete: No-can get stuck in loops, e.g.,

$$
\text { Iasi } \rightarrow \text { Neamt } \rightarrow \text { Iasi } \rightarrow \text { Neamt } \rightarrow
$$

Complete in finite space with repeated-state checking

Time: $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement

Space: $O\left(b^{m}\right)$ —keeps all nodes in memory

Optimal: No

A* search

Idea: avoid expanding paths that are already expensive
Evaluation function $f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost to goal from n
$f(n)=$ estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n.
E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance

Theorem: A^{*} search is optimal

A* search example

Optimality of A*

Suppose some suboptimal goal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

Since $f\left(G_{2}\right)>f(n)$, A* will never select G_{2} for expansion

Properties of A^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes-cannot expand f_{i+1} until f_{i} is finished

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5	4	
6	1	8
7	3	2

Start State

Goal State
$h_{1}(S)=? ?$
$h_{2}(S)=? ?$

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5	4	
6	1	8
7	3	2

Start State

Goal State
$h_{1}(S)=: 7$
$h_{2}(S)=: 2+3+3+2+4+2+0+2=18$

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible)
then h_{2} dominates h_{1} and is better for search
Typical search costs:

$$
\begin{array}{ll}
d=14 & \text { IDS }=3,473,941 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=539 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=113 \text { nodes } \\
d=24 & \mathrm{IDS}=\text { too many nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=39,135 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=1,641 \text { nodes }
\end{array}
$$

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use iterative improvement algorithms;
keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

```
function HILL-CLIMBING( problem) returns a solution state
    inputs: problem, a problem
    local variables: current, a node
        next, a node
    current \leftarrow MAKE-NodE(INITIAL-STATE[problem])
    loop do
        next \leftarrowa highest-valued successor of current
        if VALUE[next] < VALUE[current] then return current
        current \leftarrow next
    end
```


Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency
function Simulated-Annealing (problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling the probability of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
next \leftarrow a randomly selected successor of current
$\Delta E \leftarrow \operatorname{VALUE}[n e x t]$ - Value[current]
if $\Delta E>0$ then current \leftarrow next
else current \leftarrow next only with probability $e^{\Delta E / T}$

Properties of simulated annealing

T decreased slowly enough \Longrightarrow always reach best state
Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

