Introduction to Artificial Intelligence

Inference in first-order logic

Chapter 9, Sections 1-6

Dieter Fox

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-0

Proofs

Sound inference: find « such that KB |= .
Proof process is a search, operators are inference rules.

E.g., Modus Ponens (MP)

a, a =0 At(Joe,UW) At(Joe,UW) = OK(Joe)
Ié; OK (Joe)

E.g., And-Introduction (Al)

a OK(Joe) CSMagjor(Joe)
aAp OK (Joe) N CSMajor(Joe)

E.g., Universal Elimination (UE)

Ve a Ve At(z,UW) = OK(x)
of{z/T} At(Pat,UW) = OK(Pat)

7 must be a ground term (i.e., no variables)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-2

Outline

Proofs

Unification

Generalized Modus Ponens
Forward and backward chaining

Completeness

S0 S0 O

Resolution

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Example proof

Chapter 9, Sections 1-6

Bob is a buffalo 1. Buffalo(Bob)
Pat is a pig 2. Pig(Pat)

Buffaloes outrun pigs | 3. Vz,y Buffalo(z) A Pig(y) = Faster(z,y)

Bob outruns Pat _

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 9, Sections 1 6

0-1

0-3

Example proof

Bob is a buffalo 1. Buffalo(Bob)

Pat is a pig 2. Pig(Pat)

Buffaloes outrun pigs | 3. Vz,y Buffalo(z) A Pig(y) = Faster(z,y)
Bob outruns Pat

All1&?2 4. Buffalo(Bob) A Pig(Pat)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Example proof

Chapter 9, Sections 1-6

Bob is a buffalo
UE 3, {z/Bob,y/Pat}
Buffaloes outrun pigs

=

Buf falo(Bob)
Pig(Pat)

N

3. Vaz,y Buffalo(z) A Pig(y) = Faster(z,y)

0-4

Example proof

Bob is a buffalo 1.
Pat is a pig
Buffaloes outrun pigs | 3.

Buf falo(Bob)
Pig(Pat)
Vz,y Buffalo(z) A Pig(y) = Faster(z,y)

N

Bob outruns Pat

Bob outruns Pat

All1&?2
UE 3, {z/Bob, y/Pat}
MP 6 &7

ook

Faster(Bob, Pat)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Buf falo(Bob) A Pig(Pat)
Buf falo(Bob) A Pig(Pat) = Faster(Bob, Pat)

Chapter 9, Sections 1 6

0-6

All&?2
UE 3, {z/Bob,y/Pat}

Buffalo(Bob) A Pig(Pat)
Buf falo(Bob) A Pig(Pat) = Faster(Bob, Pat)

ok

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-5

Search with primitive inference rules

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains query sentence

All&2

(123 4]

Al, UE, MP is a common inference pattern

omﬁx\mop yiPaty Problem: branching factor huge, esp. for UE
Idea: find a substitution that makes the rule
premise match some known facts

= a single, more powerful inference rule

[123450)]

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-7

Unification Unification

p K o p K o
Knows(John,z) | Knows(John, Jane) Knows(John,z) | Knows(John, Jane) | {x/Jane}
Knows(John,z) | Knows(y,O0J)

Knows(John,z) | Knows(y, OJ)
Knows(John,z) | Knows(y, Mother(y) Knows(John, z) | Knows(y, Mother(y)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 9, Sections 1-6 0-8 Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-9
Unification Unification
p |4 K p |4 Lo
Knows(John,z) | Knows(John, Jane) | {x/Jane} Knows(John,z) | Knows(John, Jane) | {x/Jane}
Knows(John,z) | Knows(y, OJ) {z/John,y/OJ} Knows(John,z) | Knows(y, OJ) {z/John,y/OJ}
Knows(John,z) | Knows(y, Mother(y) Knows(John,z) | Knows(y, Mother(y) | {y/John,z/Mother(John)}
Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-10

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-11

Unification

D | q K

Knows(John,z) | Knows(John, Jane) | {x/Jane}
Knows(John,z) | Knows(y,O0J) {z/John,y/OJ}
Knows(John, z) | Knows(y, Mother(y) | {y/John,x/Mother(John)}

Idea: Unify rule premises with known facts, apply unifier to conclusion
E.g., if we know g and Knows(John,z) = Likes(John,z)
then we conclude Likes(John, Jane)
Likes(John,OJ)
Likes(John, Mother(John))

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-12

Soundness of GMP

Need to show that

/

p'y oy A AP =) Eqo
provided that p;oc = p;o for all 4
Lemma: For any definite clause p, we have p = po by UE
L(piAccApn=q¢ E®IAN...ANpp = qQo=(p1o A...Ap,od = qo)
2.p, copEDIAN AP EploN. . ADo

3. From 1 and 2, go follows by simple MP

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-14

Generalized Modus Ponens (GMP)

! L, P, Aps A...\py = .
P11, P2, , P AEH P2 p Qu where ﬁ&\o.”ﬁs.o. for all 4
qo
E.g. pi'= Faster(Bob,Pat)
po' = Faster(Pat,Steve)
p1Ap2 = q = Faster(z,y) A Faster(y,z) = Faster(z, z)

o= {z/Bob,y/Pat, z/Steve}
go= Faster(Bob, Steve)

GMP used with KB of definite clauses (exactly one positive literal):
either a single atomic sentence or

(conjunction of atomic sentences) = (atomic sentence)
All variables assumed universally quantified

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-13

Forward chaining

When a new fact p is added to the KB
for each rule such that p unifies with a premise
if the other premises are known
then add the conclusion to the KB and continue chaining

Forward chaining is data-driven
e.g., inferring properties and categories from percepts

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-15

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

1. Buf falo(xz) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(x,y) A Faster(y,z) = Faster(z,z)
4. Buf falo(Bob)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

1. Buf falo(xz) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(z,y) A Faster(y,z) = Faster(z,z)
4. Buf falo(Bob) [1a, X]

5. Pig(Pat)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6

0-16

0-18

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

1. Buf falo(xz) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(z,y) A Faster(y,z) = Faster(z,z)
4. Buf falo(Bob) [1a, x]

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-17

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

1. Buf falo(z) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(z,y) A Faster(y,z) = Faster(z,z)
4. Buf falo(Bob) [1a, X]

5. Pig(Pat) [1b, /]

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-19

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

1. Buf falo(xz) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(x,y) A Faster(y,z) = Faster(z,z)

4. Buf falo(Bob) [1a, X]

5. Pig(Pat) [1b, /] — 6. Faster(Bob, Pat) [3a,x], [3b, x]

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-20

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)

. Pig(y) A Slug(z) = Faster(y, z)

. Faster(z,y) A\ Faster(y,z) = Faster(z,z)

. Buf falo(Bob) [1a, x]

. Pig(Pat) [1b,,/] — 6. Faster(Bob, Pat) [3a, X], [3b, X]
. Pig(Pat) [2a, X]

. Slug(Steve)

~NOoT o~ WDNPRE

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-22

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)

. Pig(y) A Slug(z) = Faster(y, z)

. Faster(z,y) A\ Faster(y,z) = Faster(z,z)

. Buf falo(Bob) [1a, x]

. Pig(Pat) [1b, /] — 6. Faster(Bob, Pat) [3a,x], [3b, x]
. Pig(Pat) [2a, x]

o aabhwNBE

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)

. Pig(y) A Slug(z) = Faster(y, z)

. Faster(z,y) A\ Faster(y,z) = Faster(z,z)

. Buf falo(Bob) [1a, x]

. Pig(Pat) [1b,,/] — 6. Faster(Bob, Pat) [3a, x], [3b, X]
. Pig(Pat) [2a, X]

. Slug(Steve) [2b, /]

N o wWNER

Based on AIMA Slides @S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6

0-21

0-23

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)
. Pig(y) A Slug(z) = Faster(y, z)
. Faster(z,y) A\ Faster(y,z) = Faster(z,z)
. Buf falo(Bob) [1a, x]
. Pig(Pat) [1b, /] — 6. Faster(Bob, Pat) [3a,x], [3b, x]
. Pig(Pat) [2a, X]
. Slug(Steve) [2b, /]
—8. Faster(Pat, Steve)

~NOo o~ WDNBRE

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-24

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)
. Pig(y) A Slug(z) = Faster(y, z)
. Faster(z,y) A\ Faster(y,z) = Faster(z,z)
. Buf falo(Bob) [1a, x]
. Pig(Pat) [1b,,/] — 6. Faster(Bob, Pat) [3a, X], [3b, X]
. Pig(Pat) [2a, X]
. Slug(Steve) [2b, /]

—8. Faster(Pat, Steve) [3a, x], [3b, /]

—9. Faster(Bob, Steve) [3a, x], [3b, x]

~NOoT o~ WDNPRE

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-26

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)
. Pig(y) A Slug(z) = Faster(y, z)
. Faster(z,y) A\ Faster(y,z) = Faster(z,z)
. Buf falo(Bob) [1a, x]
. Pig(Pat) [1b, /] — 6. Faster(Bob, Pat) [3a,x], [3b, x]
. Pig(Pat) [2a, x]
. Slug(Steve) [2b, /]
—8. Faster(Pat, Steve) [3a,x], [3b, /]

~NOo o wN R

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-25

Backward chaining

When a query q is asked
if a matching fact ¢’ is known, return the unifier
for each rule whose consequent ¢’ matches ¢
attempt to prove each premise of the rule by backward chaining

(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)
Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming , e.g., Prolog

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-27

Backward chaining example

1. Pig(y) A Slug(z) = Faster(y, z)
2. Slimy(z) A Creeps(z) = Slug(z)
3. Pig(Pat) 4. Slimy(Steve) 5. Creeps(Steve)

| Faster(Pat,Steve) |

@ {y/Pat, z/Steve}

| Pig(Pat) | | Slug(Steve) |

@ U @ {z/Steve}

| Simy(Seve) | | Creeps(Steve) |

@0 ® 0

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-28

Resolution

Entailment in first-order logic is only semidecidab le:

can find a proof of a if KB = «

cannot always prove that KB = «
Cf. Halting Problem: proof procedure may be about to terminate with success
or failure, or may go on for ever

Resolution is a refutation procedure:
to prove KB = «, show that KB A —« is unsatisfiable

Resolution uses K B, —a in CNF (conjunction of clauses)
Resolution inference rule combines two clauses to make a new one:
C; C,

e

Inference continues until an empty clause is derived (contradiction)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-30

Completeness in FOL

Procedure i is complete if and only if
KBF; o whenever KB[E «

Forward and backward chaining are complete for Horn KBs
but incomplete for general first-order logic

E.g., from

PhD(z) = HighlyQualified(x)
-PhD(z) = FEarlyEarnings(z)
HighlyQualified(z) = Rich(z)
EarlyEarnings(x) = Rich(z)

should be able to infer Rich(Me), but FC/BC won't do it

Does a complete algorithm exist?

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-29

Resolution inference rule

Basic propositional version:

avp -Bvy or equivalently a b, b i
aVy a = vy

Full first-order version:

P1V...Dj ...V D,
Qg V...q ---Van
(P1V .. Pj1VDjt1 - P V@ Qo1 V @kl ---V Qn)0

where pjo = ~qro

For example,

- Rich(z) V Unhappy(z)
Rich(Me)
Unhappy(Me)

with o = {z/Me}

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-31

Resolution proof

To prove a:
— negate it
— convert to CNF
—add to CNF KB
— infer contradiction

E.g., to prove Rich(me), add —Rich(me) to the CNF KB
-PhD(z)V HighlyQuali fied(x)
PhD(z) V EarlyEarnings(x)

- HighlyQualified(x) V Rich(z)
—EarlyEarnings(z) V Rich(z)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1-6 0-32

Resolution in practice

Resolution is complete and usually necessary for mathematics

Automated theorem provers are starting to be useful to mathematicians and
have proved several new theorems

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 9, Sections 1 6 0-34

Resolution proof

=1 PhD(X) v HQ(X) THQ(X) v Rich(x)

{}

=1 PhD(X) v Rich(x)

PhD(x) v ES(x)

{}

Rich(x) v ES(X)

S1ESX) v Rich(x)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

{}

Rich(x)

=1 Rich(Me)

{xMée}

Chapter 9, Sections 1-6

