Introduction to Artificial Intelligence

Inference in first-order logic

Chapter 9, Sections 1-6

Dieter Fox
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Proofs

Sound inference: find « such that KB |= .
Proof process is a search, operators are inference rules.

E.g., Modus Ponens (MP)

a, a =0 At(Joe,UW) At(Joe,UW) = OK(Joe)
Ié; OK (Joe)

E.g., And-Introduction (Al)

a OK(Joe) CSMagjor(Joe)
aAp OK (Joe) N CSMajor(Joe)

E.g., Universal Elimination (UE)

Ve a Ve At(z,UW) = OK(x)
of{z/T} At(Pat,UW) = OK(Pat)

7 must be a ground term (i.e., no variables)
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Example proof

Chapter 9, Sections 1-6

Bob is a buffalo 1. Buffalo(Bob)
Pat is a pig 2. Pig(Pat)

Buffaloes outrun pigs | 3. Vz,y Buffalo(z) A Pig(y) = Faster(z,y)

Bob outruns Pat _
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Example proof

Bob is a buffalo 1. Buffalo(Bob)

Pat is a pig 2. Pig(Pat)

Buffaloes outrun pigs | 3. Vz,y Buffalo(z) A Pig(y) = Faster(z,y)
Bob outruns Pat

All1&?2 4. Buffalo(Bob) A Pig(Pat)
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Example proof

Chapter 9, Sections 1-6

Bob is a buffalo
UE 3, {z/Bob,y/Pat}
Buffaloes outrun pigs

=

Buf falo(Bob)
Pig(Pat)

N

3. Vaz,y Buffalo(z) A Pig(y) = Faster(z,y)

0-4

Example proof

Bob is a buffalo 1.
Pat is a pig
Buffaloes outrun pigs | 3.

Buf falo(Bob)
Pig(Pat)
Vz,y Buffalo(z) A Pig(y) = Faster(z,y)

N

Bob outruns Pat

Bob outruns Pat

All1&?2
UE 3, {z/Bob, y/Pat}
MP 6 &7

ook

Faster(Bob, Pat)
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Buf falo(Bob) A Pig(Pat)
Buf falo(Bob) A Pig(Pat) = Faster(Bob, Pat)

Chapter 9, Sections 1 6

0-6

All&?2
UE 3, {z/Bob,y/Pat}

Buffalo(Bob) A Pig(Pat)
Buf falo(Bob) A Pig(Pat) = Faster(Bob, Pat)

ok
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Search with primitive inference rules

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains query sentence

All&2

(123 4]

Al, UE, MP is a common inference pattern

omﬁx\mop yiPaty  Problem: branching factor huge, esp. for UE
Idea: find a substitution that makes the rule
premise match some known facts

= a single, more powerful inference rule

[123450)]
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Unification Unification

p K o p K o
Knows(John,z) | Knows(John, Jane) Knows(John,z) | Knows(John, Jane) | {x/Jane}
Knows(John,z) | Knows(y,O0J)

Knows(John,z) | Knows(y, OJ)
Knows(John,z) | Knows(y, Mother(y) Knows(John, z) | Knows(y, Mother(y)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998
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Unification Unification
p |4 K p |4 Lo
Knows(John,z) | Knows(John, Jane) | {x/Jane} Knows(John,z) | Knows(John, Jane) | {x/Jane}
Knows(John,z) | Knows(y, OJ) {z/John,y/OJ} Knows(John,z) | Knows(y, OJ) {z/John,y/OJ}
Knows(John,z) | Knows(y, Mother(y) Knows(John,z) | Knows(y, Mother(y) | {y/John,z/Mother(John)}
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Unification

D | q K

Knows(John,z) | Knows(John, Jane) | {x/Jane}
Knows(John,z) | Knows(y,O0J) {z/John,y/OJ}
Knows(John, z) | Knows(y, Mother(y) | {y/John,x/Mother(John)}

Idea: Unify rule premises with known facts, apply unifier to conclusion
E.g., if we know g and Knows(John,z) = Likes(John,z)
then we conclude Likes(John, Jane)
Likes(John,OJ)
Likes(John, Mother(John))
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Soundness of GMP

Need to show that

/

p'y oy A AP =) Eqo
provided that p;oc = p;o for all 4
Lemma: For any definite clause p, we have p = po by UE
L(piAccApn=q¢ E®IAN...ANpp = qQo=(p1o A...Ap,od = qo)
2.p, copEDIAN AP EploN. . ADo

3. From 1 and 2, go follows by simple MP
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Generalized Modus Ponens (GMP)

! L, P, Aps A...\py = .
P11, P2, , P AEH P2 p Qu where ﬁ&\o.”ﬁs.o. for all 4
qo
E.g. pi'= Faster(Bob,Pat)
po' = Faster(Pat,Steve)
p1Ap2 = q = Faster(z,y) A Faster(y,z) = Faster(z, z)

o= {z/Bob,y/Pat, z/Steve}
go=  Faster(Bob, Steve)

GMP used with KB of definite clauses (exactly one positive literal):
either a single atomic sentence or

(conjunction of atomic sentences) = (atomic sentence)
All variables assumed universally quantified
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Forward chaining

When a new fact p is added to the KB
for each rule such that p unifies with a premise
if the other premises are known
then add the conclusion to the KB and continue chaining

Forward chaining is data-driven
e.g., inferring properties and categories from percepts
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

1. Buf falo(xz) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(x,y) A Faster(y,z) = Faster(z,z)
4. Buf falo(Bob)
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

1. Buf falo(xz) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(z,y) A Faster(y,z) = Faster(z,z)
4. Buf falo(Bob) [1a, X]

5. Pig(Pat)
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

1. Buf falo(xz) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(z,y) A Faster(y,z) = Faster(z,z)
4. Buf falo(Bob) [1a, x]
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

1. Buf falo(z) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(z,y) A Faster(y,z) = Faster(z,z)
4. Buf falo(Bob) [1a, X]

5. Pig(Pat) [1b, /]
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

1. Buf falo(xz) A Pig(y) = Faster(z,y)

2. Pig(y) A Slug(z) = Faster(y, z)

3. Faster(x,y) A Faster(y,z) = Faster(z,z)

4. Buf falo(Bob) [1a, X]

5. Pig(Pat) [1b, /] — 6. Faster(Bob, Pat) [3a,x], [3b, x]
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)

. Pig(y) A Slug(z) = Faster(y, z)

. Faster(z,y) A\ Faster(y,z) = Faster(z,z)

. Buf falo(Bob) [1a, x]

. Pig(Pat) [1b,,/] — 6. Faster(Bob, Pat) [3a, X], [3b, X]
. Pig(Pat) [2a, X]

. Slug(Steve)

~NOoT o~ WDNPRE
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)

. Pig(y) A Slug(z) = Faster(y, z)

. Faster(z,y) A\ Faster(y,z) = Faster(z,z)

. Buf falo(Bob) [1a, x]

. Pig(Pat) [1b, /] — 6. Faster(Bob, Pat) [3a,x], [3b, x]
. Pig(Pat) [2a, x]

o aabhwNBE
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)

. Pig(y) A Slug(z) = Faster(y, z)

. Faster(z,y) A\ Faster(y,z) = Faster(z,z)

. Buf falo(Bob) [1a, x]

. Pig(Pat) [1b,,/] — 6. Faster(Bob, Pat) [3a, x], [3b, X]
. Pig(Pat) [2a, X]

. Slug(Steve) [2b, /]

N o wWNER
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)
. Pig(y) A Slug(z) = Faster(y, z)
. Faster(z,y) A\ Faster(y,z) = Faster(z,z)
. Buf falo(Bob) [1a, x]
. Pig(Pat) [1b, /] — 6. Faster(Bob, Pat) [3a,x], [3b, x]
. Pig(Pat) [2a, X]
. Slug(Steve) [2b, /]
—8. Faster(Pat, Steve)

~NOo o~ WDNBRE
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; v indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)
. Pig(y) A Slug(z) = Faster(y, z)
. Faster(z,y) A\ Faster(y,z) = Faster(z,z)
. Buf falo(Bob) [1a, x]
. Pig(Pat) [1b,,/] — 6. Faster(Bob, Pat) [3a, X], [3b, X]
. Pig(Pat) [2a, X]
. Slug(Steve) [2b, /]

—8. Faster(Pat, Steve) [3a, x], [3b, /]

—9. Faster(Bob, Steve) [3a, x], [3b, x]

~NOoT o~ WDNPRE
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Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [] = unification literal; , / indicates rule firing

. Buf falo(z) A Pig(y) = Faster(z,y)
. Pig(y) A Slug(z) = Faster(y, z)
. Faster(z,y) A\ Faster(y,z) = Faster(z,z)
. Buf falo(Bob) [1a, x]
. Pig(Pat) [1b, /] — 6. Faster(Bob, Pat) [3a,x], [3b, x]
. Pig(Pat) [2a, x]
. Slug(Steve) [2b, /]
—8. Faster(Pat, Steve) [3a,x], [3b, /]

~NOo o wN R
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Backward chaining

When a query q is asked
if a matching fact ¢’ is known, return the unifier
for each rule whose consequent ¢’ matches ¢
attempt to prove each premise of the rule by backward chaining

(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)
Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming , e.g., Prolog
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Backward chaining example

1. Pig(y) A Slug(z) = Faster(y, z)
2. Slimy(z) A Creeps(z) = Slug(z)
3. Pig(Pat) 4. Slimy(Steve) 5. Creeps(Steve)

| Faster(Pat,Steve) |

@ {y/Pat, z/Steve}

| Pig(Pat) | | Slug(Steve) |

@ U @ {z/Steve}

| Simy(Seve) | | Creeps(Steve) |

@0 ® 0
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Resolution

Entailment in first-order logic is only semidecidab le:

can find a proof of a if KB = «

cannot always prove that KB = «
Cf. Halting Problem: proof procedure may be about to terminate with success
or failure, or may go on for ever

Resolution is a refutation procedure:
to prove KB = «, show that KB A —« is unsatisfiable

Resolution uses K B, —a in CNF (conjunction of clauses)
Resolution inference rule combines two clauses to make a new one:
C; C,

e

Inference continues until an empty clause is derived (contradiction)
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Completeness in FOL

Procedure i is complete if and only if
KBF; o whenever KB[E «

Forward and backward chaining are complete for Horn KBs
but incomplete for general first-order logic

E.g., from

PhD(z) = HighlyQualified(x)
-PhD(z) = FEarlyEarnings(z)
HighlyQualified(z) = Rich(z)
EarlyEarnings(x) = Rich(z)

should be able to infer Rich(Me), but FC/BC won't do it

Does a complete algorithm exist?
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Resolution inference rule

Basic propositional version:

avp -Bvy or equivalently a b, b i
aVy a = vy

Full first-order version:

P1V...Dj ...V D,
Qg V...q ---Van
(P1V .. Pj1VDjt1 - P V@ Qo1 V @kl ---V Qn)0

where pjo = ~qro

For example,

- Rich(z) V Unhappy(z)
Rich(Me)
Unhappy(Me)

with o = {z/Me}
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Resolution proof

To prove a:
— negate it
— convert to CNF
—add to CNF KB
— infer contradiction

E.g., to prove Rich(me), add —Rich(me) to the CNF KB
-PhD(z)V HighlyQuali fied(x)
PhD(z) V EarlyEarnings(x)

- HighlyQualified(x) V Rich(z)
—EarlyEarnings(z) V Rich(z)
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Resolution in practice

Resolution is complete and usually necessary for mathematics

Automated theorem provers are starting to be useful to mathematicians and
have proved several new theorems
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Resolution proof

=1 PhD(X) v HQ(X) THQ(X) v Rich(x)

{}

=1 PhD(X) v Rich(x)

PhD(x) v ES(x)

{}

Rich(x) v ES(X)

S1ESX) v Rich(x)
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{}

Rich(x)

=1 Rich(Me)

{xMée}
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