Resolution in First-Order Logic

Basic steps for proving a conclusion S given premises
 Premise $_{1}, \ldots$, Premise $_{n}$
 (all expressed in FOL):

1. Convert all sentences to CNF
2. Negate conclusion S \& convert result to CNF
3. Add negated conclusion S to the premise clauses
4. Repeat until contradiction or no progress is made:
a. Select 2 clauses (call them parent clauses)
b. Resolve them together, performing all required unifications
c. If resolvent is the empty clause, a contradiction has been found (i.e., S follows from the premises)
d. If not, add resolvent to the premises

If we succeed in Step 4, we have proved the conclusion

Resolution Examples

Example 1:

- If something is intelligent, it has common sense
- Deep Blue does not have common sense
- Prove that Deep Blue is not intelligent

```
1. \(\forall \mathrm{x} . \mathrm{I}(\mathrm{x}) \Rightarrow \mathrm{H}(\mathrm{x})\)
2. \(\neg \mathrm{H}(\mathrm{D})\)
Conclusion: \(\neg \mathrm{I}(\mathrm{D})\)
Denial: C3: I(D)
```


$\mathrm{C} 1: \neg \mathrm{I}(\mathrm{x}) \vee \mathrm{H}(\mathrm{x})$
$\mathrm{C} 2: \neg \mathrm{H}(\mathrm{D})$

A resolution proof of $\neg(\mathrm{D})$:

Proof also written as:
C4: \neg I(D)

Resolution Examples (cont.)

Example 2:

Premises:

Mother(Lulu, Fifi)
Alive(Lulu)

Prove:

Older(Lulu, Fifi)
Denial:
\neg Older(Lulu, Fifi)
$\forall \mathrm{x} \forall \mathrm{y}$.Mother $(\mathrm{x}, \mathrm{y}) \Rightarrow \operatorname{Parent}(\mathrm{x}, \mathrm{y})$
$\forall \mathrm{x} \forall \mathrm{y}$. $(\operatorname{Parent}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{Alive}(\mathrm{x})) \Rightarrow \operatorname{Older}(\mathrm{x}, \mathrm{y})$

Resolution Examples (cont.)

Example 3:

- Suppose the desired conclusion had been "Something is older than Wifi"
$\exists x$.Old rex, Fifi)
- Denial:
$\neg \exists \mathrm{x}$.Old rx, Fifi)
also written as: $\forall \mathrm{x} . \neg$ Older (x, Fifi)
in clause form: \neg Older (x, Fifi)
- Last proof step would have been

Don't make mistake of first forming clause from conclusion \& then denying it:

- Conclusion:
$\exists x$.Old rex, Fifi)
clause form: Older (C, Fifi)
 denial: \square Older (C, Fifi)

Question-Answering

Example 1:

"Who is Lulu older than?"

- Prove that "there is an x such that Lulu is older than x "
- In FOL form:
$\exists x . \operatorname{Older}($ Lulu, x$)$
- Denial:
$\neg \exists x . \operatorname{Older}(L u l u, x)$
$\forall \mathrm{x} . \neg \operatorname{Older}(\mathrm{Lulu}, \mathrm{x})$
in clause form: \neg Older(Lulu, x$)$
- Successful proof gives
\{x/Fifi\} [Verify!!]

Example 2:
"What is older than what?"

- In FOL form:

$$
\exists \mathrm{x} \exists \mathrm{y} \text {.Older(x, y) }
$$

- Denial:
$\neg \exists \mathrm{x} \exists \mathrm{y} . \operatorname{Older}(\mathrm{x}, \mathrm{y})$
in clause form: \neg Older(x, y)
- Successful proof gives

$$
\{\mathrm{x} / \mathrm{Lulu}, \mathrm{y} / \mathrm{Fifi}\} \quad[\text { Verify!!] }
$$

