
Resolution: Motivation
• Steps in inferencing (e.g., forward-chaining)

1. Define a set of inference rules

2. Define a set of axioms

3. Repeatedly choose one inference rule
    & one or more axioms (or premices) to
    derive new sentences until the
    conclusion sentence is formed

• Basic requirement:

Rules + axioms should constitute a
complete proof system

• Observation:

Automated inferencing could be a lot more
efficient & easy to implement if there was
just a single inference rule in the proof
system!



Resolution
• Resolution (Robinson, 1965):

A form of inference that relies on a single
rule to prove the truth or falsity of logic
sentences

• Because of its simplicity, efficiency &
  completeness properties, resolution has
  dominated reasoning in AI

 Key characteristics:

• Resolution produces proofs by refutation:
“To prove a statement, assume that the
 negation of the statement is true & try
 to arrive at a contradiction”

• Simplicity achieved by forcing inference
  rule to operate on sentences that have a
  very special form called Clause Normal
  Form (CNF)

• Completeness achieved because every
  logic sentence can be converted to CNF



The Resolution Rule

Resolution relies on the following rule:

¬α ⇒ β, β ⇒ γ
Resolution rule

¬α ⇒ γ

α ∨ β, ¬β ∨ γ
Resolution rule

α ∨ γ

equivalently,

Applying the resolution rule:

1. Find two sentences that contain the
same literal, once in its positive form &
once in its negative form:

summer ∨ winter, ¬winter ∨ cold

2. Use the resolution rule to eliminate the
literal from both sentences

summer ∨ cold

CNF 
sentences



The Resolution Rule (cont.)

at-home ¬at-home

empty clause
(falsity, contradiction)

parent clauses:

resolvent:

at-home ∨ at-work ¬at-home

at-work

A resolution example:

Another example:

Observations:
• Resolution reduces the length of parent 
  clauses by one literal
• Resolution applied after first converting
  all sentences to CNF form:

• Disjunctions only
• Negations of atoms only



Basic steps for proving a proposition S:

1. Convert all propositions in premises to CNF

2. Negate S & convert result to CNF

3. Add negated S to premises

4. Repeat until contradiction or no progress is made:
a. Select 2 clauses (call them parent clauses)
b. Resolve them together
c. If resolvent is the empty clause, a contradiction

has been found (i.e., S follows from the premises)
d. If not, add resolvent to the premises

Resolution in Propositional Logic

p
(p ∧ q) ⇒ r
(s ∨ t) ⇒ q

t

p
¬p ∨ ¬q ∨ r
¬s ∨ q
¬t ∨ q
t

¬(p ∧ q) ∨ r
¬(s ∨ t) ∨ q

t CNF



Premises:

A resolution proof of r:

Resolution in Propositional Logic

p
(p ∧ q) ⇒ r
(s ∨ t) ⇒ q

t

p
¬p ∨ ¬q ∨ r
¬s ∨ q
¬t ∨ q
t CNF

¬r

¬p ∨ ¬q

¬t

¬q

¬p ∨ ¬q ∨ r

p

¬t ∨ q

t



Resolution in First-Order Logic

at-home ∨ at-work ¬at-home

at-work

In propopositional logic:

To generalize resolution proofs to FOL 
we must account for  
• Predicates
• Unbound variables
• Existential & universal quantifiers

∀x.at-home(x) ∨ at-work(x) ¬at-home(y)

?

In first-order logic:



• Disjunctions only
• Negations of atoms only

 ¬P(A,B)

• No quantifiers:
– universal quantification implicit

∀x.P(x) → P(x)

– existential quantification replaced by
Skolem constants/functions

 ∃x.P(x) → P(E)
  ∀y∃x.P(x,y) → P(E(y),y)

Clause Form in First-Order Logic

  Ordinary FOL      Clause Form

P(A)

¬¬Q(A,B)

¬(P(A) ∧ Q(B,C))

¬(P(A) ∨ Q(B,C))

P(A)none

Q(A,B)¬¬ elimination

¬P(A) ∨ ¬Q(B,C)deMorgan

¬P(A) , ¬Q(B,C)deMorgan

2 unit clauses

∧ dropping



Clause Form in First-Order Logic

Ordinary FOL                Clause Form

P(A) ⇒ Q(B,C)

¬(P(A) ⇒ Q(B,C))

P(A) ∧ (Q(B,C) ∨ R(D)) P(A), Q(B,C) ∨ R(D)∧ drop 

P(A) ∨ (Q(B,C) ∧ R(D))

∀x.P(x) 

∀x.P(x) ⇒ Q(x,A)

∃x.P(x)

P(A) ⇒ ∃x.Q(x)

¬∀x.P(x) 

¬P(A) ∨ Q(B,C)⇒ elimination

P(A), ¬Q(B,C)⇒ elimination
deMorgan, ∧ drop 

P(A) ∨ Q(B,C),
P(A) ∨ R(D)

∧ drop 
∨ distribution 

P(x)∀ drop 

¬P(x) ∨ Q(x,A)∀ drop 
⇒ elimination

P(E), where E
is a new constant

skolemization 

¬P(A) ∨ Q(F)skolemization 
⇒ elimination

¬P(G)
skolemization 

deMorgan 

∃x.¬P(x) 



Clause Form in First-Order Logic

Ordinary FOL                Clause Form

¬∃x.P(x) 

¬(∃x.P(x) ∧ ∀x.Q(x)) 
variable rename ¬(∃x.P(x) ∧ ∀y.Q(y)) 

deMorgan ¬∃x.P(x) ∨ ¬∀y.Q(y) 
deMorgan ∀x.¬P(x) ∨ ∃y.¬Q(y) 

∀x∃y.P(x,y)
fun. skolemization ∀x.P(x,K(x))

∀x∀y∃z.P(x,y,z) 

∀x.¬P(x) deMorgan

skolemization P(x,y,L(x,y))∀ drop 

∀ drop P(x,K(x))

∀ drop 
skolemization ¬P(x) ∨ ¬Q(H)

¬P(G)∀ drop 



Clause Form in First-Order Logic

Ordinary FOL                Clause Form

(∀x.P(x)) ⇒ ∃y.P(y)
⇒ elimination (¬∀x.P(x)) ∨ ∃y.P(y)

deMorgan ∃x.¬P(x) ∨ ∃y.P(y)

skolemization ¬P(N) ∨ P(O)

⇒ elimination
skol., ∀ drop ¬P(x) ∨ Q(x,M(x))∀x.P(x) ⇒ ∃y.Q(x,y)



Steps in general case:

1. Rename all variables so that all quantifiers
bind distinct variables

2. ⇒-elimination

3. deMorgan (¬∨, ¬ ∧, ¬∀, ¬∃)

4. Skolemization (∃-elimination)

5. ∀-dropping

6. ∨-distribution

7. ∧-dropping

Conversion to Clause Form



Resolution in First-Order Logic

at-home ∨ at-work ¬at-home

at-work

In propopositional logic:

To generalize resolution proofs to FOL 
we must account for  
• Predicates
• Unbound variables
• Existential & universal quantifiers

Idea: First convert sentences to clause form

∀x.at-home(x) ∨ at-work(x) ¬at-home(y)

?

In first-order logic:

at-home(x) ∨ at-work(x)

UNIFY

Then unify variables



Resolution steps for 2 clauses containing

P(arg.list1), ¬P(arg.list2)

1. Make the variables in the 2 clauses
    distinct

2. Find the “most general unifier” of
    arg.list1 & arg.list2:

go through the lists “in parallel,” making
substitutions for variables only, so as to
make the 2 lists the same

3. Make the substitutions corresponding to
    the m.g.u. throughout both clauses

4. The resolvent is the clause consisting of
    all the resulting literals except P & ¬P

Resolution Steps


