Resolution: Motivation

- Steps in inferencing (e.g., forward-chaining)
 - 1. Define a set of inference rules
 - 2. Define a set of axioms
 - Repeatedly choose one inference rule & one or more axioms (or premices) to derive new sentences until the conclusion sentence is formed
- Basic requirement:

Rules + axioms should constitute a complete proof system

• Observation:

Automated inferencing could be a lot more efficient & easy to implement if there was just a <u>single</u> inference rule in the proof system!

Resolution

• Resolution (Robinson, 1965):

A form of inference that relies on a single rule to prove the truth or falsity of logic sentences

 Because of its simplicity, efficiency & completeness properties, resolution has dominated reasoning in AI

Key characteristics:

- Resolution produces proofs by refutation: "To prove a statement, assume that the negation of the statement is true & try to arrive at a contradiction"
- Simplicity achieved by forcing inference rule to operate on sentences that have a very special form called Clause Normal Form (CNF)
- Completeness achieved because every logic sentence can be converted to CNF

The Resolution Rule

Resolution relies on the following rule:

 $\begin{array}{c} \neg \alpha \Rightarrow \beta, \beta \Rightarrow \gamma \\ \neg \alpha \Rightarrow \gamma \end{array} \quad \text{Resolution rule} \\ \end{array}$ equivalently,

$$\frac{\alpha \lor \beta, \neg \beta \lor \gamma}{\alpha \lor \gamma}$$

Resolution rule

Applying the resolution rule:

 Find two sentences that contain the same literal, once in its positive form & once in its negative form:

sentences
sentences
summer v winter, -winter v cold
2. Use the resolution rule to eliminate the
literal from both sentences

summer \lor cold

The Resolution Rule (cont.)

A resolution example:

Another example:

Observations:

- Resolution reduces the length of parent clauses by one literal
- Resolution applied after first converting all sentences to CNF form:
 - Disjunctions only
 - Negations of atoms only

Resolution in Propositional Logic

Basic steps for proving a proposition S:

1. Convert all propositions in premises to CNF

- 2. Negate S & convert result to CNF
- 3. Add negated S to premises
- 4. Repeat until contradiction or no progress is made:
 - a. Select 2 clauses (call them parent clauses)
 - b. Resolve them together
 - c. If resolvent is the empty clause, a contradiction has been found (i.e., **S** follows from the premises)
 - d. If not, add resolvent to the premises

Resolution in Propositional Logic

Premises:

A resolution proof of r:

Resolution in First-Order Logic

In propopositional logic:

In first-order logic:

To generalize resolution proofs to FOL we must account for

- Predicates
- Unbound variables
- Existential & universal quantifiers

- Disjunctions only
- Negations of atoms only $\neg P(A,B)$
- No quantifiers:

 $\forall x.P(x)$

 existential quantification replaced by Skolem constants/functions

$\exists x.P(x)$	\rightarrow	P(E)
$\forall y \exists x. P(x,y)$	\rightarrow	P(E(y),y)

P(x)

Ordinary FOL		Clause Form
$P(A) \Longrightarrow Q(B,C)$	\Rightarrow elimination	$\neg P(A) \lor Q(B,C)$
$\neg(P(A) \Rightarrow Q(B,C))$	\Rightarrow elimination deMorgan, \land drop	$P(A), \neg Q(B,C)$
$P(A) \land (Q(B,C) \lor R(D))$	$(A) \rightarrow drop \rightarrow P(A)$	A), $Q(B,C) \vee R(D)$
$P(A) \lor (Q(B,C) \land R(D))$)) $\wedge drop$ $\vee distribution$	$P(A) \lor Q(B,C),$ $P(A) \lor R(D)$
$\forall x.P(x)$	∀ drop	P(x)
$\forall x.P(x) \Longrightarrow Q(x,A)$	$\Rightarrow elimination \\ \forall drop$	$\neg P(x) \lor Q(x,A)$
$\exists x.P(x)$	skolemization	P(E), where E is a new constant
$P(A) \Longrightarrow \exists x.Q(x)$	\Rightarrow elimination skolemization	$\neg P(A) \lor Q(F)$
$\neg \forall x. P(x) \\ \exists x. \neg P(x)$	deMorgan skolemization	¬P(G)

Ordinary FOLClause Form
$$\neg\exists x.P(x)$$
 $deMorgan$ $\forall x. \neg P(x)$ $\neg deMorgan$ $\forall x. \neg P(x)$ $\neg P(G)$ $\neg (\exists x.P(x) \land \forall x.Q(x))$ $\forall drop$ $\neg P(G)$ $\neg (\exists x.P(x) \land \forall y.Q(y))$ $deMorgan$ $\neg \exists x.P(x) \lor \neg \forall y.Q(y)$ $deMorgan$ $\neg \exists x.P(x) \lor \neg \forall y. \neg Q(y)$ $\forall drop$ $\neg P(x) \lor \neg Q(H)$ $\forall x \exists y.P(x,y)$ $\forall drop$ $fun. skolemization$ $\forall x.P(x,K(x))$ $\forall drop$ $P(x,y,L(x,y))$

Ordinary FOL

Clause Form

 $\forall x.P(x) \Rightarrow \exists y.Q(x,y) \xrightarrow{\Rightarrow elimination} \neg P(x) \lor Q(x,M(x))$

skolemization

Conversion to Clause Form

Steps in general case:

- 1. Rename all variables so that all quantifiers bind distinct variables
- 2. \Rightarrow -elimination
- 3. deMorgan (¬∨, ¬ ∧, ¬∀, ¬∃)
- 4. Skolemization (∃-elimination)
- 5. ∀-dropping
- 6. \vee -distribution
- 7. A-dropping

Resolution in First-Order Logic

In propopositional logic:

In first-order logic:

To generalize resolution proofs to FOL we must account for

- Predicates
- Unbound variables
- Existential & universal quantifiers

Idea: <u>First</u> convert sentences to clause form <u>Then</u> unify variables

Resolution Steps

Resolution steps for 2 clauses containing P(arg.list1), ¬P(arg.list2)

- 1. Make the variables in the 2 clauses distinct
- 2. Find the "most general unifier" of arg.list1 & arg.list2: go through the lists "in parallel," making substitutions for variables only, so as to make the 2 lists the same
- 3. Make the substitutions corresponding to the m.g.u. throughout both clauses
- 4. The resolvent is the clause consisting of all the resulting literals except $P \& \neg P$