Facts & Representations



Examples:

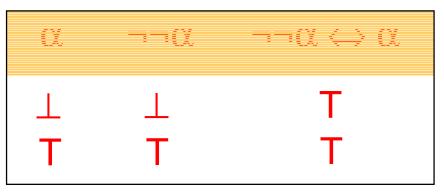
"Socrates is a man" \rightarrow MANSOCRATES "Spot is a dog" \rightarrow Dog(Spot)

Validity & Soundness

• Validity:

Some sentences are always true (valid) & so can always be assumed

Truth table for $\neg \neg \alpha \Leftrightarrow \alpha$:

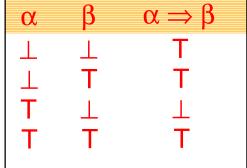


Verify for $(\alpha \Rightarrow \beta) \Leftrightarrow (\neg \alpha \lor \beta)$

• Soundness:

A rule of inference is sound if it always leads from the premises to a true conclusion $R \to R$

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta} \quad \text{MP:}$$



Entailment & Completeness

Entailment:

"Whenever premises $\alpha_1, \alpha_2, \dots \alpha_n$ are true, conclusion β is true"

We write: $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$

• A "good" proof system should also allow us to prove β from $\alpha_1, \alpha_2, \dots \alpha_n$

Completeness

A proof system is complete if, whenever $\alpha_1, \alpha_2, \dots \alpha_n \models \beta$ (semantic entailment) we can prove β from $\alpha_1, \alpha_2, \dots \alpha_n$ using the inference axioms & inference rules of the proof system

 $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$ (syntactic proof)

There are many complete proof systems for propositional logic

Writing out the truth table for $\alpha_1, \alpha_2, \dots \alpha_n, \beta$ is one method that is complete!

Another complete proof system:

1.
$$(\alpha \land \beta) \Leftrightarrow \neg (\neg \alpha \lor \neg \beta)$$

2. $(\alpha \Rightarrow \beta) \Leftrightarrow (\neg \alpha \lor \beta)$
3. $(\alpha \Leftrightarrow \beta) \Leftrightarrow ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$
4. $(\alpha \land \alpha) \Leftrightarrow \alpha$
5. $\beta \Leftrightarrow (\alpha \lor \beta)$
6. $(\alpha \lor \beta) \Leftrightarrow (\beta \lor \alpha)$
7. $(\beta \Rightarrow \gamma) \Rightarrow ((\alpha \lor \beta) \Rightarrow (\alpha \lor \gamma))$

Satisfiability

- Suppose S is a sentence composed of atomic sentences (letters) $\alpha_1, \alpha_2, \dots \alpha_n$
- An assignment of truth values to α₁,α₂,...α_n that make S true is called a <u>satisfying</u> <u>assignment</u>
- In general, we may need to go through all 2ⁿ possible interpretations of α₁,α₂,...α_n to find a satisfying assignment
- nSAT: The problem of finding a satisfying assignment for sentences with n distinct letters
- nSAT is NP-complete