Introduction to Artificial Intelligence

Rational decisions

Chapter 16

Dieter Fox

Outline

- Rational preferences
- ♦ Utilities
- ♦ Money
- Multiattribute utilities
- Decision networks
- Value of information

Preferences

uncertain prizes An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with

Lottery
$$L = [p, A; (1-p), B]$$

Notation:

$$A \succ B$$

A preferred to B

$$A \sim B$$

 $A \gtrsim B$

indifference between A and B

$$A \gtrsim B$$

B not preferred to A

Rational preferences

Idea: preferences of a rational agent must obey constraints.

Rational preferences ⇒

behavior describable as maximization of expected utility

Constraints:

Orderability

$$(A \succ B) \lor (B \succ A) \lor (A \sim B)$$

Transitivity

$$(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$$

Continuity

$$A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$$

Substitutability

$$A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$$

Monotonicity

$$A \succ B \ \Rightarrow \ (p \geq q \ \Leftrightarrow \ [p,A;\ 1-p,B] \succsim [q,A;\ 1-q,B])$$

Rational preferences contd

Violating the constraints leads to self-evident irrationality

away all its money For example: an agent with intransitive preferences can be induced to give

If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B

If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A

If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C

Maximizing expected utility

there exists a real-valued function U such that Given preferences satisfying the constraints Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):

$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$

$$U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$$

MEU principle:

Choose the action that maximizes expected utility

without ever representing or manipulating utilities and probabilities Note: an agent can be entirely rational (consistent with MEU)

E.g., a lookup table for perfect tictactoe

Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities: adjust lottery probability p until $A \sim L_p$ compare a given state A to a standard lottery L_p that has "worst possible catastrophe" u_{\perp} with probability (1-p)"best possible prize" $u_{ op}$ with probability p

Utility scales

Normalized utilities: $u_{\rm T}=1.0$, $u_{\rm \perp}=0.0$

Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years useful for medical decisions involving substantial risk

Note: behavior is **invariant** w.r.t. linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

ordinal utility can be determined, i.e., total order on prizes With deterministic prizes only (no lottery choices), only

Student group utility

For each x, adjust p until half the class votes for lottery (M=10,000)

Money

Money does not behave as a utility function

usually U(L) < U(EMV(L)), i.e., people are risk-averse Given a lottery L with expected monetary value EMV(L),

a lottery [p, \$M; (1-p), \$0] for large M? Utility curve: for what probability \boldsymbol{p} am I indifferent between a fixed prize \boldsymbol{x} and

Typical empirical data, extrapolated with risk-prone behavior:

Decision networks

to enable rational decision making Add action nodes and utility nodes to belief networks

Algorithm:

For each value of action node Return MEU action compute expected value of utility node given action, evidence

Multiattribute utility

How can we handle utility functions of many variables $X_1 \dots X_n$? E.g., what is U(Deaths, Noise, Cost)?

preterence behaviour? How can complex utility functions be assessed from

plete identification of $U(x_1, \ldots, x_n)$ Idea 1: identify conditions under which decisions can be made without com-

and derive consequent canonical forms for $U(x_1, \ldots, x_n)$ Idea 2: identify various types of independence in preferences

Strict dominance

Typically define attributes such that U is **monotonic** in each

Strict dominance: choice B strictly dominates choice A iff

$$orall i \; X_i(B) \geq X_i(A) \;\;\; ext{ (and hence } U(B) \geq U(A))$$

Strict dominance seldom holds in practice

Value of information

Can be done directly from decision network Idea: compute value of acquiring each possible piece of evidence

Example: buying oil drilling rights

Consultant offers accurate survey of A. Fair price? Current price of each block is k/2Prior probabilities 0.5 each, mutually exclusive Two blocks A and B, exactly one has oil, worth k

Solution: compute expected value of information

= expected value of best action given the information minus expected value of best action without information

Survey may say "oil in A" or "no oil in A", prob. 0.5 each

= $[0.5 \times \text{ value of "buy A" given "oil in A"}]$

+ $0.5 \times$ value of "buy B" given "no oil in A"]

I О

 $= (0.5 \times k/2) + (0.5 \times k/2) - 0 = k/2$

General formula

Current evidence E, current best action α Possible action outcomes S_i , potential new evidence E_j

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i|E,a)$$

Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_{jk}}|E, E_j = e_{jk}) = \max_{a} \sum_{i} U(S_i) P(S_i|E, a, E_j = e_{jk})$$

 E_j is a random variable whose value is $\mathit{currently}$ unknown must compute expected gain over all possible values:

$$VPI_{E}(E_{j}) = \left(\sum_{k} P(E_{j} = e_{jk}|E)EU(\alpha_{e_{jk}}|E, E_{j} = e_{jk})\right) - EU(\alpha|E)$$

(VPI = value of perfect information)

Properties of VPI

Nonnegative—in expectation, not post hoc

$$\forall j, E \ VPI_E(E_j) \geq 0$$

Nonadditive—consider, e.g., obtaining E_j twice

$$VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$$

Order-independent

$$VPI_{E}(E_{j}, E_{k}) = VPI_{E}(E_{j}) + VPI_{E, E_{j}}(E_{k}) = VPI_{E}(E_{k}) + VPI_{E, E_{k}}(E_{j})$$

maximizing VPI for each to select one is not always optimal Note: when more than one piece of evidence can be gathered, evidence-gathering becomes a sequential decision problem

Qualitative behaviors

- a) Choice is obvious, information worth little
- b) Choice is nonobvious, information worth a lot c) Choice is nonobvious, information worth little

