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Preferences

An agent chooses among prizes (A, B, etc.) and lotteries , i.e., situations with
uncertain prizes

A
P
L
Lottery L = [p, 4; (1 —p), B] 15
B
Notation:
A>B A preferred to B
A~ B indifference between A and B

AZB B not preferred to A
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Rational preferences

|ldea: preferences of a rational agent must obey constraints.
Rational preferences =
behavior describable as maximization of expected utility

Constraints:

Orderability

(A-B)V(B>A)V (A~ B)
Transitivity

(A-B)AN(B>=C) = (A= C)
Continuity

A-B>~C = dp [p,A; 1 —p,C]~B
Substitutability

A~B = [p,A; 1-p,C]~ [p,B;1—p,C]
Monotonicity

A-B = (p>q © [p,A4; 1—p,B]Z[q,4; 1 —¢q,B))
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Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give
away all its money

If B = C, then an agent who has C = A
would pay (say) 1 centto get B 1c 1c

If A = B, then an agent who has B
would pay (say) 1 centto get A B

O~

If C - A, then an agent who has A TC
would pay (say) 1 centto get C
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Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such that

UA)>UB) & AZB

U(lp1,S1; .- 5 Pn,Snl) = M@ piU(S;)

MEU principle :
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe
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Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standar d lotter y L, that has
“best possible prize” u+ with probability p
“worst possible catastrophe” «, with probability (1 — p)
adjust lottery probability p until A ~ L,

continue as before

instant death
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Utility scales

Normaliz ed utilities : uT =1.0, u; = 0.0

Micromor ts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. linear transformation
U'(z) =kU(x)+ ky where k; >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes
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Student group utility

For each z, adjust p until half the class votes for lottery (M=10,000)
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Money

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L),
usually U(L) < U(EMV (L)), i.e., people are risk-a verse

Utility curve: for what probability p am | indifferent between a fixed prize x and
a lottery [p, $M; (1 — p), $0] for large M?

Typical empirical data, extrapolated with risk-pr one behavior:
+U

A go00 0 090

I _
—-150,000 800,000
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Decision networks

Add action nodes and utility nodes to belief networks
to enable rational decision making

Airport Site

SN

Litigation e|'®

Algorithm:

For each value of action node
compute expected value of utility node given action, evidence

Return MEU action

Air Traffic
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Multiattribute utility

How can we handle utility functions of many variables X; ... X,,?
E.g., what is U(Deaths, Noise, Cost)?

How can complex utility functions be assessed from
preference behaviour?

Idea 1: identify conditions under which decisions can be made without com-
plete identification of U(x1, ..., %)

ldea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(z1,...,xy)
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Strict dominance

Typically define attributes such that U is monotonic in each

Strict dominance : choice B strictly dominates choice A iff

Vi X;(B) > Xi(A)

Thisregion
dominates A

Deterministic attributes

Strict dominance seldom holds in practice
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Uncertain attributes
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Value of information

Idea: compute value of acquiring each possible piece of evidence
Can be done directl y from decision netw ork

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth &
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is k/2
Consultant offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A” or “no olil in A", prob. 0.5 each
= [0.5 x value of “buy A” given “oil in A”
+ 0.5 x value of “buy B” given “no oil in A”]
-0
=(0.5xk/2)+ (0.5 xk/2)—0=Fk/2
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General formula

Current evidence E, current best action o
Possible action outcomes S;, potential new evidence E;

FEU(alF) = max MU@ U(S;) P(S;|E,a)

Suppose we knew E; = ejx, then we would choose a.;, s.t.

EU(ce,, |E, E; =eji) = max MUS U(S;) P(Si|E,a, E; =eji)

E; 1s a random variable whose value Is currently unknown
= must compute expected gain over all possible values:

a\wNmAmwv = Mw wAmu.Hmww_mvquQm?_m“mwHmu.wv |@QAOL@V

(VPI = value of perfect information)
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Properties of VPI

Nonnegative —in expectation, not post hoc
Vj,E VPIg(E;) >0
Nonad ditive —consider, e.g., obtaining E; twice
VPIg(E;, Ey) # VPIg(E;) + VPIg(Ey)
Order-independent
VPIg(Ej, Ey) = VPIg(E;) + VPIg g, (Ey) = VPIg(Ey) + VPIg g, (E;)

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
= evidence-gathering becomes a sequential decision problem
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Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little

P(UIE;) P(UIE;)

P(UIE;) >

(@) (b)
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