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Outline

♦ Bayesian networks: syntax and semantics

♦ Inference tasks
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Belief networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT)
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
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Note: ≤ k parents ⇒ O(dkn) numbers vs. O(dn)
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(X1, . . . , Xn) = Π
n

i= 1P(Xi|Parents(Xi))

e.g., P (J ∧M ∧A ∧ ¬B ∧ ¬E) is given by ??
=
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(X1, . . . , Xn) = Π
n

i= 1P(Xi|Parents(Xi))

e.g., P (J ∧M ∧A ∧ ¬B ∧ ¬E) is given by ??
= P (¬B)P (¬E)P (A|¬B ∧ ¬E)P (J |A)P (M |A)

“Local” semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics ⇔ global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket : parents + children + children’s parents
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Constructing belief networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . , Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, . . . , Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . , Xn) = Π
n

i= 1P(Xi|X1, . . . , Xi−1) (chain rule)

= Π
n

i= 1P(Xi|Parents(Xi)) by construction
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

JohnCalls
�

P (J |M) = P (J)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm
�

JohnCalls
�

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm
�

Burglary

JohnCalls
�

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)?
P (B|A, J,M) = P (B)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm
�

Burglary

Earthquake

JohnCalls
�

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)?
P (E|B,A, J,M) = P (E|A,B)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm
�

Burglary

Earthquake

JohnCalls
�

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)? No
P (E|B,A, J,M) = P (E|A,B)? Yes
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Example: Car diagnosis

Initial evidence: engine won’t start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters
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Example: Car insurance

Predict claim costs (medical, liability, property)
given data on application form (other unshaded nodes)
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Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and query other nodes.

P (Burglary | JohnCalls )??
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Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and query other nodes.

P (Burglary | JohnCalls )??

• Burglary only every 1000 days, but John calls 50 times in 1000 days,
i.e. for each burglary we receive 50 false alarms.

 P (Burglary | JohnCalls) = 0.016!
• P (Burglary | JohnCalls,MaryCalls) = 0.29.
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Types of inference

1. Diagnostic: From effects to causes
P (Burglary | JohnCalls) = 0.016

2. Causal: From causes to effects
P (JohnCalls | Burglary) = 0.86

3. Intercausal: between causes of common effect
P (Burglary | Alarm) = 0.376, but P (Burglary | Alarm,Earthquake) =
0.003.

4. Mixed: Combinations of 1.-3.
P (Alarm | JohnCalls,¬Earthquake) = 0.03
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Inference tasks

Queries : compute posterior marginal P(Xi|E = e)
e.g., P (NoGas|Gauge= empty, Lights= on, Starts= false)

Optimal decisions : decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information : which evidence to seek next?

Sensitivity analysis : which probability values are most critical?

Explanation : why do I need a new starter motor?
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Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican ⇔ Canadian ∨ US ∨Mexican

E.g., numerical relationships among continuous variables

∂Level

∂t
= inflow + precipation - outflow - evaporation
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U1 . . . Uk include all causes (can add leak node )
2) Independent failure probability qi for each cause alone

⇒ P (X|U1 . . . Uj ,¬Uj+1 . . .¬Uk) = 1−Π
j

i= 1qi

Cold F lu Malaria P (Fever) P (¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1

Number of parameters linear in number of parents
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