Introduction to Artificial Intelligence

Belief networks

Chapter 15.1-2

Dieter Fox

Outline

\diamond Bayesian networks: syntax and semantics
\diamond Inference tasks

Belief networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable a directed, acyclic graph (link \approx "directly influences") a conditional distribution for each node given its parents:

$$
\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

In the simplest case, conditional distribution represented as a conditional probability table (CPT)

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

Note: $\leq k$ parents $\Rightarrow O\left(d^{k} n\right)$ numbers vs. $O\left(d^{n}\right)$

Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

e.g., $P(J \wedge M \wedge A \wedge \neg B \wedge \neg E)$ is given by??
$=$

Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

e.g., $P(J \wedge M \wedge A \wedge \neg B \wedge \neg E)$ is given by??

$$
=P(\neg B) P(\neg E) P(A \mid \neg B \wedge \neg E) P(J \mid A) P(M \mid A)
$$

"Local" semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Constructing belief networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n

$$
\text { add } X_{i} \text { to the network }
$$

select parents from X_{1}, \ldots, X_{i-1} such that

$$
\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

This choice of parents guarantees the global semantics:

$$
\begin{gathered}
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \text { (chain rule) } \\
=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \text { by construction }
\end{gathered}
$$

Example

Suppose we choose the ordering M, J, A, B, E

JohnCalls
$P(J \mid M)=P(J) ?$

Example

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) ? \quad \text { No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ?
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

Burglary

```
\(P(J \mid M)=P(J)\) ? No
\(P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ? \quad\) No
\(P(B \mid A, J, M)=P(B \mid A) ?\)
\(P(B \mid A, J, M)=P(B)\) ?
```


Example

Suppose we choose the ordering M, J, A, B, E

Earthquake
$P(J \mid M)=P(J)$? No
$P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ? \quad$ No
$P(B \mid A, J, M)=P(B \mid A)$? Yes
$P(B \mid A, J, M)=P(B)$? No
$P(E \mid B, A, J, M)=P(E \mid A) ?$
$P(E \mid B, A, J, M)=P(E \mid A, B) ?$

Example

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) \text { ? No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? Yes }
\end{aligned}
$$

Example: Car diagnosis

Initial evidence: engine won't start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters

Example: Car insurance

Predict claim costs (medical, liability, property) given data on application form (other unshaded nodes)

Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and query other nodes.

P (Burglary \mid JohnCalls)??

Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and query other nodes.

P (Burglary | JohnCalls)??

- Burglary only every 1000 days, but John calls 50 times in 1000 days, i.e. for each burglary we receive 50 false alarms.
$\leadsto P($ Burglary \mid JohnCalls $)=0.016$!
- $P($ Burglary \mid JohnCalls, MaryCalls $)=0.29$.

Types of inference

Causal
 Intercausal

1. Diagnostic: From effects to causes $P($ Burglary \mid JohnCalls $)=0.016$
2. Causal: From causes to effects $P($ JohnCalls \mid Burglary $)=0.86$
3. Intercausal: between causes of common effect $P($ Burglary \mid Alarm $)=0.376$, but $P($ Burglary \mid Alarm, Earthquake $)=$ 0.003 .
4. Mixed: Combinations of 1.-3.
$P($ Alarm \mid JohnCalls, \neg Earthquake $)=0.03$

Inference tasks

Queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$
e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=o n$, Starts $=$ false $)$

Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
$X=f(\operatorname{Parents}(X))$ for some function f
E.g., Boolean functions

$$
\text { NorthAmerican } \Leftrightarrow \text { Canadian } \vee U S \vee \text { Mexican }
$$

E.g., numerical relationships among continuous variables

$$
\frac{\partial L e v e l}{\partial t}=\text { inflow }+ \text { precipation }- \text { outflow }- \text { evaporation }
$$

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Rightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	$F l u$	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	$\mathbf{0 . 0}$	1.0
F	F	T	0.9	$\mathbf{0 . 1}$
F	T	F	0.8	$\mathbf{0 . 2}$
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	$\mathbf{0 . 6}$
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

