Introduction to Artificial Intelligence

Belief networks

Chapter 15.1-2

Dieter Fox

Outline

- \diamondsuit Bayesian networks: syntax and semantics
- \diamond Inference tasks

Belief networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents:

 $\mathbf{P}(X_i | Parents(X_i))$

In the simplest case, conditional distribution represented as a **conditional probability table** (CPT)

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: *Burglar*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls* Network topology reflects "causal" knowledge:

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: *Burglar*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls* Network topology reflects "causal" knowledge:

Note: $\leq k$ parents $\Rightarrow O(d^k n)$ numbers vs. $O(d^n)$

Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$\mathbf{P}(X_1,\ldots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i))$$

e.g.,
$$P(J \land M \land A \land \neg B \land \neg E)$$
 is given by??

Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$\mathbf{P}(X_1,\ldots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i))$$

e.g., $P(J \land M \land A \land \neg B \land \neg E)$ is given by?? = $P(\neg B)P(\neg E)P(A|\neg B \land \neg E)P(J|A)P(M|A)$

"Local" semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Constructing belief networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

```
    Choose an ordering of variables X<sub>1</sub>,..., X<sub>n</sub>
    For i = 1 to n
add X<sub>i</sub> to the network
select parents from X<sub>1</sub>,..., X<sub>i-1</sub> such that
P(X<sub>i</sub>|Parents(X<sub>i</sub>)) = P(X<sub>i</sub>|X<sub>1</sub>,..., X<sub>i-1</sub>)
```

This choice of parents guarantees the global semantics: $\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^{n} \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \text{ (chain rule)}$ $= \prod_{i=1}^{n} \mathbf{P}(X_i | Parents(X_i)) \text{ by construction}$

Suppose we choose the ordering M, J, A, B, E

$$P(J|M) = P(J)?$$

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Suppose we choose the ordering M, J, A, B, E

$$P(J|M) = P(J)$$
? No
 $P(A|J,M) = P(A|J)$? $P(A|J,M) = P(A)$?

Suppose we choose the ordering M, J, A, B, E

$$P(J|M) = P(J)$$
? No
 $P(A|J,M) = P(A|J)$? $P(A|J,M) = P(A)$? No
 $P(B|A, J, M) = P(B|A)$?
 $P(B|A, J, M) = P(B)$?

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Suppose we choose the ordering M, J, A, B, E

$$\begin{split} P(J|M) &= P(J)? \text{ No} \\ P(A|J,M) &= P(A|J)? \ P(A|J,M) = P(A)? \text{ No} \\ P(B|A,J,M) &= P(B|A)? \text{ Yes} \\ P(B|A,J,M) &= P(B)? \text{ No} \\ P(E|B,A,J,M) &= P(E|A)? \\ P(E|B,A,J,M) &= P(E|A,B)? \end{split}$$

Suppose we choose the ordering M, J, A, B, E

$$\begin{array}{ll} P(J|M) = P(J)? \quad \mbox{No} \\ P(A|J,M) = P(A|J)? \quad P(A|J,M) = P(A)? \quad \mbox{No} \\ P(B|A,J,M) = P(B|A)? \quad \mbox{Yes} \\ P(B|A,J,M) = P(B)? \quad \mbox{No} \\ P(E|B,A,J,M) = P(E|A)? \quad \mbox{No} \\ P(E|B,A,J,M) = P(E|A,B)? \quad \mbox{Yes} \end{array}$$

Example: Car diagnosis

Initial evidence: engine won't start Testable variables (thin ovals), diagnosis variables (thick ovals) Hidden variables (shaded) ensure sparse structure, reduce parameters

Example: Car insurance

Predict claim costs (medical, liability, property) given data on application form (other unshaded nodes)

Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and query other nodes.

P(*Burglary* | *JohnCalls*)??

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and query other nodes.

P(**Burglary** | **JohnCalls**)??

- Burglary only every 1000 days, but John calls 50 times in 1000 days, i.e. for each burglary we receive 50 false alarms.
- $\rightsquigarrow P(\textit{Burglary} | \textit{JohnCalls}) = 0.016!$
 - P(Burglary | JohnCalls, MaryCalls) = 0.29.

Types of inference

- 1. **Diagnostic**: From effects to causes P(Burglary | JohnCalls) = 0.016
- 2. Causal: From causes to effects P(JohnCalls | Burglary) = 0.86
- 3. Intercausal: between causes of common effect $P(Burglary \mid Alarm) = 0.376$, but $P(Burglary \mid Alarm, Earthquake) = 0.003$.
- 4. Mixed: Combinations of 1.-3.

 $P(Alarm \mid JohnCalls, \neg Earthquake) = 0.03$

Queries: compute posterior marginal $P(X_i | E = e)$ e.g., P(NoGas | Gauge = empty, Lights = on, Starts = false)

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Compact conditional distributions

CPT grows exponentially with no. of parents CPT becomes infinite with continuous-valued parent or child

Solution: **canonical** distributions that are defined compactly

Deterministic nodes are the simplest case: X = f(Parents(X)) for some function f

E.g., Boolean functions $NorthAmerican \Leftrightarrow Canadian \lor US \lor Mexican$

E.g., numerical relationships among continuous variables

$$\frac{\partial Level}{\partial t} = \text{ inflow + precipation - outflow - evaporation}$$

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^{j} q_i$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters **linear** in number of parents