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Outline

> Bayesian networks: syntax and semantics

> Inference tasks
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Belief networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link =~ “directly influences”)
a conditional distribution for each node given its parents:
P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table  (CPT)
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn’t call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn’t call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
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Note: < k parents = O(d*n) numbers vs. O(d")
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(Xy,...,X,) = Hi: (P (X;|Parents(X;))

eg., P(JAMANANAN—-BA-FE)Iis given by ??
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(Xy,...,X,) = Hi: (P (X;|Parents(X;))

eg., P(JAMANANAN—-BA-FE)Iis given by ??
= P(-B)P(—E)P(A|-BAN—-E)P(J|A)P(M|A)

“Local” semantics. each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics <« global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket : parents + children + children’s parents
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Constructing belief networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1,..., X,
2. Fori=1ton
add X, to the network
select parents from X, ..., X,;_; such that
P(X;|Parents(X;)) = P(X;| X1, ..., X;—1)

This choice of parents guarantees the global semantics:
P(Xl, e ,Xn) = Hi: 1P<XZ"X1, Cee Xz'—l) (Chain rU|e)

= H-:lP(Xi|Parent5(X7;)) by construction

1
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 15.1-2 0-9



Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)?
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Example

Suppose we choose the ordering M, J, A, B, E

Burglary

(JIM) = P(J)? No

(A|J, M) = P(A|J)? P(A|J, M) = P(A)? No
(B|A, J, M) = P(B|A)?
(

P
P
P
P(B|A, J, M) = P(B)?
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Example

Suppose we choose the ordering M, J, A, B, E

Earthquake

P(J|M)= P(J)? No

P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A,J,M)= P(B|A)? Yes

P(B|A,J,M)= P(B)? No

P(E|B,A,J,M)= P(E|A)?

P(E|B,A,J,M)= P(E|A,B)?
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Example

Suppose we choose the ordering M, J, A, B, E

Burglary
Earthquake

P(J|M)= P(J)? No

P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A,J,M)= P(B|A)? Yes

P(B|A,J,M)= P(B)? No
P(E|B,A,J,M)=P(E|A)? No
P(E|B,A,J,M) = P(E|A,B)? Yes
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Example: Car diagnosis

Initial evidence: engine won't start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters

alternator
broken

fuel line
blocked
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Example: Car insurance

Predict claim costs (medical, liability, property)
given data on application form (other unshaded nodes)
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Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and gquery other nodes.
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Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and gquery other nodes.
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P(Burglary | JohnCalls )??

e Burglary only every 1000 days, but John calls 50 times in 1000 days,
l.e. for each burglary we receive 50 false alarms.
~» P(Burglary | JohnCalls) = 0.016!
e P(Burglary | JohnCalls, MaryCalls) = 0.29.

o~
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Types of inference

e o (Explaining Away) e

Diagnostic Causal Intercausal Mixed

1. Diagnostic: From effects to causes
P(Burglary | JohnCalls) = 0.016
2. Causal: From causes to effects
P(JohnCalls | Burglary) = 0.86
3. Intercausal: between causes of common effect
P(Burglary | Alarm) = 0.376, but P(Burglary | Alarm, Earthquake) =
0.003.
4. Mixed: Combinations of 1.-3.
P(Alarm | JohnCalls, —Earthquake) = 0.03
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Inference tasks

Queries : compute posterior marginal P(X;|E=e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Optimal decisions : decision networks include utility information;
probabilistic inference required for P(outcomel|action, evidence)

Value of information : which evidence to seek next?
Sensitivity analysis : which probability values are most critical?

Explanation : why do | need a new starter motor?
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Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian Vv US V Mexican

E.g., numerical relationships among continuous variables

OLevel
ot

= inflow + precipation - outflow - evaporation

Based on AIMA Slides ©S. Russell and P. Norvig, 1998 Chapter 15.1-2

0-20



Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U; ... U, include all causes (can add leak node )
2) Independent failure probability ¢; for each cause alone

J

— P()(‘l]l...(]j,ﬁ j+1...ﬂUk):1—Hi:1qi

Cold Flu Malaria P(Fever) | P(—~Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02 =0.2 x0.1

T F F 0.4 0.6

T F T 0.94 0.06 =0.6 x 0.1

T T F 0.88 0.12 =0.6 x 0.2

T T T 0.988 0.012 =0.6 x 0.2 x 0.1

Number of parameters linear in number of parents
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