Introduction to Artificial Intelligence

Inference in belief networks
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1. E = Ignition d-separates Gas and Radio

2. E = Battery d-separates Gas and Radio

3. Gas and Radio are independent given no evidence, but Gas and Radio
are dependent given E = Starts or £ = Moves.
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D-Separation

Nodes X are independent of nodes Y given FE, when every undirected path
from a node in X to a node in Y is d-separated by E.
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Inference, outline

{» Exact inference by enumeration
{ Exact inference by variable elimination

{ Approximate inference by stochastic simulation
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually con-
structing its explicit representation

Simple query on the burglary network:

P(B|J =true, M =true)

P(B, J =true, M =true)/P(J =true, M =true)
aP (B, J =true, M =true)

QMmMu;HVAm“ e,a, J =true, M =true)

Rewrite full joint entries using product of CPT entries:
P(B=truelJ =true, M =true)

M M P(B=true)P(e)P(a|B =true, e)P(J =true|la)P(M =true|a)
=aP(B H?:mvmmwﬁmvmnﬁﬂg_m =true, e)P(J =true|a) P(M =true|a)
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Inference by variable elimination

Enumeration is inefficient: repeated computation
e.g., computes P(J =true|a) P(M =true|a) for each value of e

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|J =true, M =true)
=aP(B) Mum P(e) MU P(a|B,e) P QH?@m_@vagH?ﬁm_@v
{

> A 7 M
HQWAmVM P(e VM P(a|B,e)P(J =truela)fi(a)
HQHuAvaU P(e VMU P(a|B,e)fs(a)fu(a)
= QEEMULUA VMUE?E b,e)fs(a)fm(a)
= QEEMU P(e)fasm (b, e) (sum out A)
= oP(B)fz 50 (b) (SUm out E)
=afp(b) X fzasm ()
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Enumeration algorithm

Exhaustive depth-first enumeration: O(n) space, O(d™) time

ENUMERATIONASK(X,e,bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1,..., X»)
Q(X) < a distribution over X
for each value z; of X do
extend e with value z; for X
Q(z;) + ENUMERATEALL(VARs[bn],e)
return NORMALIZE(Q(X))

ENUMERATEALL(vars,e) returns a real number
if EMPTY?(vars) then return 1.0
else do
Y < F1rST(vars)
if Yhas value yine
then return P(y | Pa(Y)) x ENUMERATEALL(REST(vars),e)
else return >° P(y | Pa(Y)) x ENUMERATEALL(REST(vars),ey)
where ey is e extended with Y = y
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Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d*n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability P
3) Show this converges to the true probability P

Outline:
— Sampling from an empty network
— Rejection sampling: reject samples disagreeing with evidence
— Likelihood weighting: use evidence to weight samples
— MCMC: sample from a stochastic process whose stationary
distribution is the true posterior
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Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event

Sps(xy...xn) = z&HHﬁAangﬁmimANLv =P(zy...zp)
i.e., the true prior probability

Let Nps(Y =y) be the number of samples generated for which Y =y, for any
set of variables Y.

Then P(Y =y) = Npg(Y =y)/N and

N,\_m:oow?ni = ) Sps(Y=y,H=h)
h
= Y P(Y=y,H=h)
h
= P(Y=y)

That is, estimates derived from PRIORSAMPLE are consistent
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Sampling from an empty network

function PRIORSAMPLE(bn) returns an event sampled from P(Xy, ..., X,) specifipd
X < an event with n elements
fori = 1tondo
x; < a random sample from P(X; | Parents(X;))
return x

P(Cloudy) = (0.5,0.5) c| Py
sample — true 10

P(Sprinkler|Cloudy) = (0.1,0.9)
sample — false

-

P(Rain|Cloudy) = (0.8,0.2) s R [ Pw)
sample — true M s
P(WetGrass|—Sprinkler, Rain) = (0.9,0.1) FT| %
sample — true L
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Rejection sampling

P(X|e) estimated from samples agreeing with e

function REJECTIONSAMPLING(X,e,bn,N) returns an approximation to P(X|e)
N[X] « a vector of counts over X, initially zero
for j=1to N do
X < PRIORSAMPLE(bn)
if x is consistent with e then
N[z] < N[z]+1 where z is the value of X in x
return NORMALIZE(IN[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain =true and 19 have Rain = false.

P(Rain|Sprinkler = true) = NORMALIZE((8, 19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P(X|e) = aNpg(X, e) (algorithm defn.)
= Nps(X,e)/Nps(e) (normalized by Npg(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
=P(Xle) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P(e) is small
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Likelihood weighting example

Estimate P(Rain|Sprinkler =true, WetGrass =true)
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Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function WEIGHTEDSAMPLE(bn,e) returns an event and a weight
X < an event with n elements; w+ 1
fori=1tondo
if X; has avalue z; in e
then w+ w x P(X;= z; | Parents(X;))
else z; < a random sample from P(X; | Parents(X;))
return x, w

function LIKELIHOODWEIGHTING(X,e,bn,N) returns an approximation to P(X|e)
‘W[X] < a vector of weighted counts over X, initially zero
for j=1to N do
X, w4 WEIGHTEDSAMPLE(bn)
W]z] < W][z] + w where z is the value of X in x
return NORMALIZE(W[X])
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LW example contd.

Sample generation process:
1. w+ 1.0
2. Sample P(Cloudy) = (0.5,0.5); say true
3. Sprinkler has value true, so
w < w X P(Sprinkler =true|Cloudy =true) = 0.1
4. Sample P(Rain|Cloudy =true) = (0.8, 0.2); say true
5. WetGrass has value true, SO
w < w X P(WetGrass =true|Sprinkler =true, Rain = true) = 0.099
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Approximate inference using MCMC

“State” of network = current assignment to all variables

Generate next state by sampling one variable given its Markov blanket
Sample each variable in turn, keeping evidence fixed

Approaches stationary distribution: long-run fraction of time spent in each

state is exactly proportional to its posterior probability

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(Y;|M B(Y;)) won't change much (law of large numbers)
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Case study: Pathfinder IV

Diagnostic expert system for lymph-node diseases.
Deciding on vocabulary: 8 hours
Design topology of network: 35 hours

Make 14,000 probability assessments: 40 hours

16-16

Pathfinder now outperforms experts who were consulted during its creation!
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Performance of approximation algorithms

Absolute approximation: |[P(X|e) — P(X|e)| < ¢

|P(x|e)-P(X|e)| -

P(X[€) ¢

Relative approximation:
Relative = absolute since0 < P <1

Randomized algorithms may fail with probability at most §
Polytime approximation: poly(n,e!,log 1)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any ¢, < 0.5
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