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Belief networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ~ “directly influences”)
a conditional distribution for each node given its parents:
P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT)
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Outline

{ Bayesian networks: syntax and semantics

$ Inference tasks
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Example

I’'m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(Xy,...,X,) = E . _1P(X;|Parents(X;))

1=

eg., P(JAMANANA-BA-E)is given by??
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Constructing belief networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1,..., X,
2.Fori=1ton
add X; to the network
select parents from X1, ..., X;_; such that
HvANN_NUQﬁmS\wmA;XMVV = ”—.UA;NQ_NT ey Ns.luv

This choice of parents guarantees the global semantics:
P(X,...,X,) = E&npwﬁn_kr ..., X;—1) (chain rule)

= z&u 1P(X;|Parents(X;)) by construction
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Example: Car diagnosis

Initial evidence: engine won't start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded) ensure sparse structure, reduce parameters

alternator fanbelt
broken broken

fuel line
blocked
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Example: Car insurance

Predict claim costs (medical, liability, property)
given data on application form (other unshaded nodes)
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U, ... Uy include all causes (can add leak node)

2) Independent failure probability ¢; for each cause alone
J

= NUA;N_Q‘H...Q‘?J Q..I...Jq\nv =1- H_”_”&HHS

Cold Flu Malaria P(Fever) | P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012=0.6 x 0.2 x 0.1

Number of parameters linear in number of parents
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Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < CanadianV USV Mexican

E.g., numerical relationships among continuous variables

OLevel . . .
5 = inflow + precipation - outflow - evaporation
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Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and query other nodes.
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P(Burglary | JohnCalls)??
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Types of inference Inference tasks

< © & & Queries: compute posterior marginal P(X; E=e)
. . . e e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)
D

o e B Optimal decisions: decision networks include utility information;
(Explaining Away) e e s . . .
Diagnostic  Causal I nter causal Mixed probabilistic inference required for P(outcomelaction, evidence)

. . . Value of information: which evidence to seek next?
1. Diagnostic: From effects to causes

P(Burglary | JohnCalls) = 0.016

2. Causal: From causes to effects Sensitivity analysis: which probability values are most critical?
P(JohnCalls | Burglary) = 0.86

3. Intercausal: between causes of common effect Explanation: why do | need a new starter motor?
P(Burglary | Alarm) = 0.376, but P(Burglary | Alarm, Earthquake) =
0.003.

4. Mixed: Combinations of 1.-3.
P(Alarm | JohnCalls, —Earthquake) = 0.03
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