Introduction to Artificial Intelligence

Belief networks

Chapter 15.1–2

Dieter Fox

Inference tasks

Bayesian networks: syntax and semantics

Outline

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 15.1–2 0-0

Belief networks

and hence for compact specification of full joint distributions A simple, graphical notation for conditional independence assertions

Syntax:

a set of nodes, one per variable മ a directed, acyclic graph (link \approx "directly influences") conditional distribution for each node given its parents: $\mathbf{P}(X_i|Parents(X_i))$

a conditional probability table (CPT) In the simplest case, conditional distribution represented as

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 15.1-2

1-1

Example

doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar? I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary

Network topology reflects "causal" knowledge: Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Semantics

the product of the local conditional distributions: "Global" semantics defines the full joint distribution as

$$\mathbf{P}(X_1,\ldots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i|Parents(X_i))$$

e.g.,
$$P(J \land M \land A \land \neg B \land \neg E)$$
 is given by?? =

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 15.1-2 4-4

Constructing belief networks

conditional independence guarantees the required global semantics Need a method such that a series of locally testable assertions of

- 1. Choose an ordering of variables X_1,\ldots,X_n 2. For i = 1 to n

add X_i to the network

select parents from X_1, \ldots, X_{i-1} such that

$$\mathbf{P}(X_i|Parents(X_i)) = \mathbf{P}(X_i|X_1, \dots, X_{i-1})$$

This choice of parents guarantees the global semantics:

$$\mathbf{P}(X_1,\dots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i|X_1,\dots,X_{i-1}) \text{ (chain rule)}$$

$$= \prod_{i=1}^n \mathbf{P}(X_i|Parents(X_i)) \text{ by construction}$$

Markov blanket

Markov blanket: parents + children + children's parents Each node is conditionally independent of all others given its

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 15.1-2

Ç1

Example: Car diagnosis

Initial evidence: engine won't start

Hidden variables (shaded) ensure sparse structure, reduce parameters Testable variables (thin ovals), diagnosis variables (thick ovals)

Example: Car insurance

Predict claim costs (medical, liability, property) given data on application form (other unshaded nodes)

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 15.1-2 8-8

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)

2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^r q_i$$

_	⊣	⊣	-1	П	П	П	П	Cold
-1	_	TI	П	_	1	П	П	Flu
-1	П	⊣	П	⊣	П	⊣	П	Malaria
0.988	0.88	0.94	0.4	0.98	0.8	0.9	0.0	P(Fever)
$0.012 = 0.6 \times 0.2 \times 0.1$	$0.12 = 0.6 \times 0.2$	$0.06 = 0.6 \times 0.1$	0.6	$0.02 = 0.2 \times 0.1$	0.2	0.1	1.0	$P(\neg Fever)$

Number of parameters linear in number of parents

Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case: X = f(Parents(X)) for some function f

E.g., Boolean functions $North American \Leftrightarrow Canadian \lor US \lor Mexican$

E.g., numerical relationships among continuous variables

 $\frac{\partial Level}{\partial t} = \text{inflow} + \text{precipation} - \text{outflow} - \text{evaporation}$

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 15.1-2

9-9

Inference in Bayesian networks

Instantiate some nodes (evidence nodes) and query other nodes.

P(Burglary | JohnCalls)??

Types of inference

- 1. Diagnostic: From effects to causes $P(Burglary \mid JohnCalls) = 0.016$
- Ņ Causal: From causes to effects $P(\textit{JohnCalls} \mid \textit{Burglary}) = 0.86$
- ω Intercausal: between causes of common effect

 $P(\textit{Burglary} \mid \textit{Alarm}) = 0.376$, but $P(\textit{Burglary} \mid \textit{Alarm}, \textit{Earthquake}) =$

4. Mixed: Combinations of 1.-3.

 $P(Alarm \mid JohnCalls, \neg Earthquake) = 0.03$

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 15.1-2 12-12

Based on AIMA Slides ©S. Russell and P. Norvig, 1998

Chapter 15.1–2

13-13

Inference tasks

Queries: compute posterior marginal $P(X_i|E=e)$ $\textbf{e.g.},\ P(NoGas|Gauge=empty,Lights=on,Starts=false)$

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?