INTELLIGENT AGENTS

Chapter 2

\mathbf{PAGE}

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 2 1

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 2 2

Must first specify the setting for intelligent agent design

Consider, e.g., the task of designing an automated taxi:

Percepts??

Actions??

Goals??

Environment??

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Outline

- ♦ PAGE (Percepts, Actions, Goals, Environment)
- Environment types
- Agent types

PAGE

Must first specify the setting for intelligent agent design

Consider, e.g., the task of designing an automated taxi:

Percepts?? video, accelerometers, gauges, engine sensors, microphone, GPS,

Actions?? steer, accelerate, brake, horn, speak/display, ...

 $\underline{\underline{\mathsf{Goals}}}$? safety, reach destination, maximize profits, obey laws, passenger comfort, ...

<u>Environment??</u> US urban streets, freeways, traffic, pedestrians, weather, customers, . . .

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 2

Chapter 2

Environment types

	Chess	Backgammon	laxi
Accessible??			
<u>Deterministic??</u>			
Episodic??			
Static??			
Discrete??			

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 2 5

Agent types

Four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

AIMA Slides @Stuart Russell and Peter Norvig, 1998

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 2 6

Environment types

	Chess	Backgammon	Taxi
Accessible??	Yes	Yes	No
<u>Deterministic</u> ??	Yes	No	No
Episodic??	No	No	No
Static??	Yes	Yes	No
Discrete??	Yes	Yes	No

The environment type largely determines the agent design

continuous The real world is (of course) inaccessible, stochastic, sequential, dynamic,

Chapter 2

Chapter 2

Reflex agents with state

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 2 9

Utility-based agents

Agent How the world evolves What my actions do Goals What it will be like if I do action A What the world is like now What action I should do now

Environment

Effectors

State

Sensors

Goal-based agents

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 2 10

Problem solving and search

Chapter 3

$\operatorname{Outline}$

- \Diamond Problem-solving agents
- Problem types
- Problem formulation
- \Diamond Example problems
- \Diamond Basic search algorithms

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 3 13

Example: Romania

Flight leaves tomorrow from Bucharest On holiday in Romania; currently in Arad

Formulate goal: be in Bucharest

Formulate problem:

states: various cities

operators: drive between cities

Find solution:

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 3

Problem-solving agents

Restricted form of general agent:

```
function Simple-Problem-Solving-Agent( p) returns an action
return action
                               action \leftarrow \texttt{Recommendation}(s, state) \\ s \leftarrow \texttt{Remainder}(s, state)
                                                                                                                                                                                                                          if s is empty then
                                                                                                                                                                                                                                                                state \leftarrow \text{Update-State}(state, p)
                                                                                                                                                                                                                                                                                                                                                                                                                                       static: s, an action sequence, initially empty
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                inputs: p, a percept
                                                                                                                                                                                          g \!\leftarrow\! \texttt{Formulate-Goal}(state)
                                                                                                              s \leftarrow \text{Search}(problem)
                                                                                                                                                    problem \leftarrow Formulate-Problem(state, g)
                                                                                                                                                                                                                                                                                                                                                               g, a goal, initially null
                                                                                                                                                                                                                                                                                                                                                                                                     state, some description of the current world state
                                                                                                                                                                                                                                                                                                                         problem, a problem formulation
```

Note: this is offline problem solving.

problem and solution. Online problem solving involves acting without complete knowledge of the

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 3 14

Example: Romania

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 3

Problem types

 $\underline{\mathsf{Deterministic}}, \, \underline{\mathsf{accessible}} \Longrightarrow \mathit{single-state} \,\, \mathit{problem}$

Nondeterministic, inaccessible $\implies contingency \ problem$ often interleave search, execution solution is a tree or policy must use sensors during execution

Unknown state space $\implies exploration \ problem$ ("online")

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 3 17

Selecting a state space

Real world is absurdly complex

 \Rightarrow state space must be abstracted for problem solving

(Abstract) state = set of real states

For guaranteed realizability, any real state "in Arad" $(\mathsf{Abstract})$ operator = complex combination of real actions must get to some real state "in Zerind" e.g., "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.

(Abstract) solution =

set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem!

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 3

Single-state problem formulation

A problem is defined by four items:

initial state e.g., "at Arad"

 $\frac{operators}{\text{e.g., Arad}} \rightarrow \text{Zerind} \qquad \text{Arad} \rightarrow$ $\mathsf{Arad} \to \mathsf{Sibiu}$ etc.

 $goal\ test$, can be

implicit, e.g., NoDirt(x) $\mathit{explicit}$, e.g., x= "at Bucharest'

 $\underline{path\ cost}$ (additive)

e.g., sum of distances, number of operators executed, etc.

leading from the initial state to a goal state A solution is a sequence of operators

AIMA Slides @Stuart Russell and Peter Norvig, 1998

Chapter 3 18

Example: The 8-puzzle

Start State

Goal State

၈

G

operators?? goal test?? path cost?? states??

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 3

Example: The 8-puzzle

7	6	5
$\overline{}$		
ω		4
$\overline{}$		
8	8	

7	8	1
6		2
5	4	3

Goal State

 $\frac{states??: integer\ locations\ of\ tiles\ (ignore\ intermediate\ positions)}{operators??: move\ blank\ left,\ right,\ up,\ down\ (ignore\ unjamming\ etc.)} \\ \frac{goal\ test??:=goal\ state\ (given)}{path\ cost??:\ 1\ per\ move}$

[Note: optimal solution of $n ext{-}\mathsf{Puzzle}$ family is NP-hard]

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 3 21

Example: service robot

states??

operators??

goal test??

path cost??

Chapter 3 22