CSE 473 Guest Lecture (Raj Rao): Neural Networks

- Outline:
 - The 3-pound universe
 - Those gray cells…
 - Input-Output transformation in neurons
 - Modeling neurons
 - Neural Networks
 - Learning Networks
 - Applications

- Corresponds to Chapter 19 in Russell and Norvig

The 3-pound universe we “live” in
Those gray cells…Neurons

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991, pg. 21

Basic Input-Output Transformation in a Neuron

Spike (= a brief pulse)
Communication between neurons: Synapses

- Synapses: Connections between neurons
 - Electrical synapses (gap junctions)
 - Chemical synapses (use neurotransmitters)
- Synapses can be excitatory or inhibitory
- Synapses are integral to memory and learning

R. Rao: Neural Networks

Distribution of synapses on a real neuron…

R. Rao: Neural Networks
McCulloch–Pitts artificial “neuron” (1943)

- Attributes of artificial neuron:
 - m binary inputs and 1 output (0 or 1)
 - Synaptic weights \(w_{ij} \)
 - Threshold \(\mu_i \)

\[
n_i(t+1) = \Theta\left[\sum_j w_{ij} n_j(t) - \mu_i \right]
\]

\(\Theta(x) = 1 \) if \(x \geq 0 \) and \(0 \) if \(x < 0 \)

Properties of Artificial Neural Networks

- High level abstraction of neural input-output transformation:
 Inputs \(\rightarrow \) weighted sum of inputs \(\rightarrow \) nonlinear function \(\rightarrow \) output

- Often used where data or functions are uncertain
 - Goal is to learn from a set of training data
 - And generalize from learned instances to new unseen data

- Key attributes:
 1. Massively parallel computation
 2. Distributed representation and storage of data (in the synaptic weights and activities of neurons)
 3. Learning (networks adapt themselves to solve a problem)
 4. Fault tolerance (insensitive to component failures)
Topologies of Neural Networks

- **completely connected**
- **feedforward** *(directed, acyclic)*
- **recurrent** *(feedback connections)*

Networks Types

- **Feedforward versus recurrent networks**
 - Feedforward: No loops, input → hidden layers → output
 - Recurrent: Use feedback (positive or negative)

- **Continuous versus spiking**
 - Continuous networks model mean spike rate (firing rate)

- **Supervised versus unsupervised learning**
 - Supervised networks use a “teacher”
 - Desired output for each input is provided by user
 - Unsupervised networks find hidden statistical patterns in input data
 - Clustering, principal component analysis, etc.
Perceptrons

- Fancy name for a type of layered feedforward networks
- Uses McCulloch-Pitts type neuron: \(\text{Output}_i = \Theta \left[\sum_j w_{ij} \xi_j \right] \)
- Output of neuron is 1 if and only if weighted sum of inputs is greater than 0:
 \(\Theta(x) = 1 \) if \(x \geq 0 \) and 0 if \(x < 0 \) (a “step” function)

\[
\sum_{j} w_{ij} \xi_j = 0
\]

Computational Power of Perceptrons

- Consider a single-layer perceptron
 - Assume threshold units
 - Assume binary inputs and outputs
 - Weighted sum forms a linear hyperplane \(\sum_j w_{ij} \xi_j = 0 \)
- Consider a single output network with two inputs
 - Only functions that are linearly separable can be computed
 - Example: AND is linearly separable: \(\text{a AND b} = 1 \) iff \(a = 1 \) and \(b = 1 \)
Linear inseparability

- Single-layer perceptron with threshold units fails if problem is not linearly separable
 - Example: XOR
 - a XOR b = 1 iff (a=0,b=1) or (a=1,b=0)
 - No single line can separate the “yes” outputs from the “no” outputs!

- Minsky and Papert’s book showing such negative results was very influential – essentially killed neural networks research for over a decade!

Solution in 1980s: Multilayer perceptrons

- Removes many limitations of single-layer networks
 - Can solve XOR

- Two examples of two-layer perceptrons that compute XOR

- E.g. Right side network
 - Output is 1 if and only if \(x + y - 2(x + y - 1.5 > 0) - 0.5 > 0 \)
Multilayer Perceptron

Output neurons

One or more layers of hidden units (hidden layers)

Input nodes

The most common activation functions:
Step function Θ or Sigmoid function:

$$g(a) = \frac{1}{1 + e^{-\beta a}}$$

(non-linear “squashing” function)

Example: Perceptrons as Constraint Satisfaction Networks

out

y

2

1

x
Example: Perceptrons as Constraint Satisfaction Networks

\[1 + \frac{1}{2} x - y < 0 \]

\[1 + \frac{1}{2} x - y > 0 \]
Example: Perceptrons as Constraint Satisfaction Networks

Perceptrons as Constraint Satisfaction Networks
Learning networks

- We want networks that can adapt themselves
 - Given input data, minimize errors between network’s output and actual output by changing weights (supervised learning)
 - Can generalize from learned data to predict new outputs

Can this network adapt its weights to solve a problem?

How do we train it?

Gradient-descent learning (a la Hill-climbing)

- Use a differentiable activation function
 - Try a continuous function $f(\cdot)$ instead of step function $\Theta(\cdot)$
 - First guess: Use a linear unit
- Define an error function (cost function or “energy” function)

$$ E = \frac{1}{2} \sum_i \sum_u \left[y_i^u - \sum_j w_{ij} \xi_j \right]^2 $$

Cost function measures the network’s squared errors as a differentiable function of the weights

Then $\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}} = \eta \sum_u \left[y_i^u - \sum_j w_{ij} \xi_j \right] \xi_j$ changes weights in the direction of smaller errors

- Minimizes the mean-squared error over input patterns μ
- Called Delta rule = Widrow-Hoff rule = LMS rule
Learning via Backpropagation of Errors

- Backpropagation is just gradient-descent learning for multilayer feedforward networks
- Use a *nonlinear*, differentiable activation function
 - Such as a sigmoid:
 \[
 f \equiv \frac{1}{1 + \exp(-2\eta h)} \quad \text{where} \quad h \equiv \sum_j w_{ij} \xi_j
 \]
- Result: Can propagate credit/blame back to internal nodes
 - Change in weights for output layer is similar to Delta rule
 - Chain rule (calculus) gives \(\Delta w_{ij} \) for internal “hidden” nodes

Backpropagation

Multi-layer error-back-propagation (MLBP)

\[
a_i^\mu = g_i \left(\sum_j W_{ij} a_j^\nu \left(\sum_k w_{jk} \xi_k^\lambda \right) \right)
\]

Back-propagation learning: \(\Delta W_{ij}(t+1) = -\eta \frac{\partial E}{\partial W_{ij}} \)

Error measure:
\[
E = \frac{1}{2} \sum_{t,\mu} \left(a_i^\mu - a_i^{\mu*} \right)^2
\]

R. Rao: Neural Networks 23
Backpropagation (for Math lovers’ eyes only!)

✦ Let A_i be the activation (weighted sum of inputs) of neuron i
✦ Let $V_j = g(A_j)$ be output of hidden unit j
✦ Learning rule for hidden-output connection weights:
 \[
 \Delta W_{ij} = -\eta \frac{\partial E}{\partial W_{ij}} = \eta \sum_\mu [d_\mu - a_i] g'(A_i) V_j
 = \eta \sum_\mu \delta_i V_j
 \]
✦ Learning rule for input-hidden connection weights:
 \[
 \Delta w_{jk} = -\eta \frac{\partial E}{\partial w_{jk}} = -\eta \left(\frac{\partial E}{\partial V_j} \right) \left(\frac{\partial V_j}{\partial w_{jk}} \right) \{\text{chain rule}\}
 = \eta \sum_\mu,\lambda \left([d_\lambda - a_i] g'(A_i) W_{ij} \right) g'(A_j) \xi_k
 = \eta \sum_\mu \delta_j \xi_k
 \]

Hopfield networks (example of recurrent nets)

✦ Act as “autoassociative” memories to store patterns
 \[
 \text{McCulloch-Pitts neurons with outputs -1 or 1, and threshold } \Theta
 \]
✦ All neurons connected to each other
 ♦ Symmetric weights ($w_{ij} = w_{ji}$) and $w_{ii} = 0$
✦ Asynchronous updating of outputs
 ♦ Let s_i be the state of unit i
 ♦ At each time step, pick a random unit
 ♦ Set s_i to 1 if $\sum_j w_{ij} s_j \geq \mu_i$; otherwise, set s_i to -1

R. Rao: Neural Networks
Hopfield networks

- Network converges to cost function’s local minima which store different patterns

- Store \(p \) \(N \)-dimensional pattern vectors \(x_1, \ldots, x_p \) using a “Hebbian” learning rule:
 \[
 w_{ji} = \frac{1}{N} \sum_{m=1}^{p} x_{m,j} x_{m,i} \quad \text{for all } j \neq i; \quad 0 \text{ for } j = i
 \]
 \[
 W = \frac{1}{N} \sum_{m=1}^{p} x_m x_m^T \quad \text{(outer product of vectors; diagonal zero)}
 \]
 * \(T \) denotes vector transpose

Pattern Completion in a Hopfield Network

Network converges from here to here

Local minimum (“attractor”) of cost (or “energy”) function stores pattern
Recent Trends and Applications of Neural Networks

✦ Recent Trends

✦ Probabilistic approach: NNs as Bayesian networks (allows principled derivation of dynamics, learning rules, and even network structure)
✦ Not-so-artificial networks: Make network more biologically realistic
✦ NNs in Hardware: Ultra-fast implementation of large learning networks in silicon

✦ Applications

✦ Text to speech generation (NETtalk by Sejnowski & Rosenberg)
✦ Handwritten character recognition (zip codes on envelopes)
✦ Autonomous driving (ALVINN at CMU – uses backprop network)
✦ Control of other physical systems
✦ Demos! (by Keith Grochow, as part of CSE 599, 2001)

Demos

✦ Neural Network learns to balance a pole on a cart

✦ System:
 ➢ 4 state variables: \(x_{cart}, v_{cart}, \theta_{pole}, v_{pole} \)
 ➢ 1 input: Force on cart

✦ Backprop Network:
 ➢ Input: State variables
 ➢ Output: New force on cart

✦ NN learns to back a truck into a loading dock

✦ System (Nyugen and Widrow, 1989):
 ➢ State variables: \(x_{cab}, y_{cab}, \theta_{cab} \)
 ➢ 1 input: new \(\theta_{steering} \)

✦ Backprop Network:
 ➢ Input: State variables
 ➢ Output: Force on cart