
1R. Rao: Neural Networks

CSE 473 Guest Lecture (Raj Rao): Neural Networks

✦ Outline:
➭ The 3-pound universe
➭ Those gray cells…
➭ Input-Output transformation in neurons
➭Modeling neurons
➭ Neural Networks
➭ Learning Networks
➭ Applications

✦ Corresponds to Chapter 19 in Russell and Norvig

2R. Rao: Neural Networks

The 3-pound universe we “live” in

Thalamus

Hypothalamus

Pons

Medulla

Spinal cord

Cerebellum

Cerebrum/Cerebral Cortex

3R. Rao: Neural Networks

Those gray cells…Neurons

From Kandel, Schwartz, Jessel,
Principles of Neural
Science, 3rd edn., 1991, pg.
21

4R. Rao: Neural Networks

Basic Input-Output Transformation in a Neuron

Input
Spikes

Output
Spike

(Excitatory Post-Synaptic Potential)

Spike (= a brief pulse)

5R. Rao: Neural Networks

Communication between neurons: Synapses

✦ Synapses: Connections between
neurons
➭ Electrical synapses (gap junctions)
➭ Chemical synapses (use

neurotransmitters)

✦ Synapses can be excitatory or
inhibitory

✦ Synapses are integral to memory
and learning

6R. Rao: Neural Networks

Distribution of synapses on a real neuron…

7R. Rao: Neural Networks

McCulloch–Pitts artificial “neuron” (1943)

✦ Attributes of artificial neuron:
➭ m binary inputs and 1 output (0 or 1)
➭ Synaptic weights wij

➭ Threshold µi

Inputs Output

Weighted Sum Threshold

Θ(x) = 1 if x ≥ 0 and 0 if x < 0

n t w n ti ij j
j

i+() = () −
L
NM

O
QP∑1 Θ µ

8R. Rao: Neural Networks

Properties of Artificial Neural Networks

✦ High level abstraction of neural input-output
transformation:
Inputs ! weighted sum of inputs ! nonlinear function ! output

✦ Often used where data or functions are uncertain
➭ Goal is to learn from a set of training data
➭ And generalize from learned instances to new unseen data

✦ Key attributes:
1. Massively parallel computation
2. Distributed representation and storage of data (in the synaptic

weights and activities of neurons)
3. Learning (networks adapt themselves to solve a problem)
4. Fault tolerance (insensitive to component failures)

9R. Rao: Neural Networks

Topologies of Neural Networks

completely
connected feedforward

(directed, acyclic)
recurrent

(feedback connections)

10R. Rao: Neural Networks

Networks Types

✦ Feedforward versus recurrent networks
➭ Feedforward: No loops, input ! hidden layers ! output
➭ Recurrent: Use feedback (positive or negative)

✦ Continuous versus spiking
➭ Continuous networks model mean spike rate (firing rate)

✦ Supervised versus unsupervised learning
➭ Supervised networks use a “teacher”

➧ Desired output for each input is provided by user
➭ Unsupervised networks find hidden statistical patterns in input

data
➧ Clustering, principal component analysis, etc.

11R. Rao: Neural Networks

Perceptrons

✦ Fancy name for a type of layered feedforward networks

✦ Uses McCulloch-Pitts type neuron:

✦ Output of neuron is 1 if and only if weighted
sum of inputs is greater than 0:
Θ(x) = 1 if x ≥ 0 and 0 if x < 0 (a “step” function)

Output wi ij j
j

=
L
N
MM

O
Q
PP∑Θ ξ

MultilayerSingle-layer

12R. Rao: Neural Networks

Computational Power of Perceptrons

✦ Consider a single-layer perceptron
➭ Assume threshold units
➭ Assume binary inputs and outputs
➭ Weighted sum forms a linear hyperplane

✦ Consider a single output network with two inputs
➭ Only functions that are linearly separable can be computed
➭ Example: AND is linearly separable: a AND b = 1 iff a = 1 and b = 1

wij j
j

ξ∑ = 0

ξ o = −1

Linear hyperplane

13R. Rao: Neural Networks

Linear inseparability

✦ Single-layer perceptron with threshold units fails if problem
is not linearly separable
➭ Example: XOR
➭ a XOR b = 1 iff (a=0,b=1) or (a=1,b=0)
➭ No single line can separate the “yes”

outputs from the “no” outputs!

✦ Minsky and Papert’s book
showing such negative results
was very influential – essentially
killed neural networks research
for over a decade!

14R. Rao: Neural Networks

Solution in 1980s: Multilayer perceptrons

✦ Removes many limitations of single-layer networks
➭ Can solve XOR

✦ Two examples of two-layer perceptrons that compute XOR

✦ E.g. Right side network
➭ Output is 1 if and only if x + y – 2(x + y – 1.5 > 0) – 0.5 > 0

x y

15R. Rao: Neural Networks

Multilayer Perceptron

Input nodes

Output neurons

} One or more
layers of
hidden units
(hidden layers)

ae
ag β−+

=
1

1
)(

a

Ψ(a)
1

The most common
activation functions:
Step function Θ or
Sigmoid function:

(non-linear
“squashing” function)

g(a)g(a)

16R. Rao: Neural Networks

x y

out

x

y

1

1

2

1 2

2

1
1

1− 1−

2

1−

1−1

2

1−

?

Example: Perceptrons as Constraint Satisfaction Networks

17R. Rao: Neural Networks

x y

out

x

y

1

1

2

1 2

0
2

1
1 >−+ yx

0
2

1
1 <−+ yx

=0

=1

2

1
1

1−

Example: Perceptrons as Constraint Satisfaction Networks

18R. Rao: Neural Networks

x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

=0

=0=1

=1

1−

2

1−

Example: Perceptrons as Constraint Satisfaction Networks

19R. Rao: Neural Networks

x y

out

x

y

1

1

2

1 2

=0

=0=1

=1

1−1

2

1− -
2

1− >0

Example: Perceptrons as Constraint Satisfaction Networks

20R. Rao: Neural Networks

x y

out

x

y

1

1

2

1 2

02 <−− yx

0
2

1
1 >−+ yx

=0

=0=1

=1

2

1
1

1− 1−

2

1−

1−1

2

1−

Perceptrons as Constraint Satisfaction Networks

21R. Rao: Neural Networks

Learning networks

✦ We want networks that can adapt themselves
➭ Given input data, minimize errors between network’s

output and actual output by changing weights (supervised
learning)

➭ Can generalize from learned data to predict new outputs

Can this network adapt its
weights to solve a problem?

How do we train it?

22R. Rao: Neural Networks

Gradient-descent learning (a la Hill-climbing)

✦ Use a differentiable activation function
➭ Try a continuous function f () instead of step function Θ()

➧ First guess: Use a linear unit
➭ Define an error function (cost function or “energy” function)

✦ Changes weights in the direction of smaller errors
➭ Minimizes the mean-squared error over input patterns µ
➭ Called Delta rule = Widrow-Hoff rule = LMS rule

E Y wi
u

ij j
jui

= −
L
N
MM

O
Q
PP∑∑∑1

2

2

ξ

Then ∆w
E

w
Y wij

ij
i
u

ij j
ju

j=− = −
L
N
MM

O
Q
PP

∂
∂ ∑∑η η ξ ξ

Cost function measures
the network’s squared
errors as a
differentiable function
of the weights

23R. Rao: Neural Networks

Learning via Backpropagation of Errors

✦ Backpropagation is just gradient-descent learning for
multilayer feedforward networks

✦ Use a nonlinear, differentiable activation function
➭ Such as a sigmoid:

✦ Result: Can propagate credit/blame back to internal nodes
➭ Change in weights for output layer is similar to Delta rule
➭ Chain rule (calculus) gives ∆wij for internal “hidden” nodes

f
h

h wij j
j

≡
+ −

≡∑1
1 2exp η

ξa f where

24R. Rao: Neural Networks

Backpropagation

Vj

25R. Rao: Neural Networks

Backpropagation (for Math lovers’ eyes only!)

✦ Let Ai be the activation (weighted sum of inputs) of neuron i

✦ Let Vj = g(Aj) be output of hidden unit j

✦ Learning rule for hidden-output connection weights:
➭ ∆Wij = -η∂Ε/∂Wij = η Σµ [di – ai] g’(Ai) Vj

= η Σµ δi Vj

✦ Learning rule for input-hidden connection weights:
➭ ∆wjk = -η ∂Ε/∂wjk = -η (∂Ε/∂Vj) (∂Vj/∂wjk) {chain rule}

=η Σµ,ι ([di – ai] g’(Ai) Wij) (g’ (Aj) ξk)
= η Σµ δj ξk

26R. Rao: Neural Networks

Hopfield networks (example of recurrent nets)

✦ Act as “autoassociative” memories to store patterns
➭ McCulloch-Pitts neurons with outputs -1 or 1, and threshold Θ

➭ All neurons connected to each other
➧ Symmetric weights (wij = wji) and wii = 0

➭ Asynchronous updating of outputs
➧ Let si be the state of unit i
➧ At each time step, pick a random unit
➧ Set si to 1 if Σj wij sj ≥ µi; otherwise, set si to -1

completely
connected

27R. Rao: Neural Networks

Hopfield networks

✦ Network converges to cost function’s local minima which
store different patterns

✦ Store p N-dimensional pattern vectors x1, …, xp using a
“Hebbian” learning rule:
➭ wji = 1/N Σm=1,..,p x m,j x m,i for all j ≠ i; 0 for j = i
➭ W = 1/N Σm=1,..,p x m x m

T (outer product of vectors; diagonal zero)
➧ T denotes vector transpose

x4

x1

28R. Rao: Neural Networks

Pattern Completion in a Hopfield Network

!

Local minimum
(“attractor”) of cost
(or “energy”) function
stores pattern

Network converges
from here

to here

29R. Rao: Neural Networks

Recent Trends and Applications of Neural Networks

✦ Recent Trends
➭ Probabilistic approach: NNs as Bayesian networks (allows principled

derivation of dynamics, learning rules, and even network structure)

➭ Not-so-artificial networks: Make network more biologically realistic

➭ NNs in Hardware: Ultra-fast implementation of large learning
networks in silicon

✦ Applications
➭ Text to speech generation (NETtalk by Sejnowski & Rosenberg)

➭ Handwritten character recognition (zip codes on envelopes)

➭ Autonomous driving (ALVINN at CMU – uses backprop network)

➭ Control of other physical systems

➧ Demos! (by Keith Grochow, as part of CSE 599, 2001)

30R. Rao: Neural Networks

Demos

✦ Neural Network learns to balance a pole on a cart
➭ System:

➭ 4 state variables: xcart, vcart, θpole, vpole

➭ 1 input: Force on cart
➭ Backprop Network:

➭ Input: State variables
➭Output: New force on cart

✦ NN learns to back a truck into a loading dock
➭ System (Nyugen and Widrow, 1989):

➭ State variables: xcab, ycab, θcab

➭ 1 input: new θsteering

➭ Backprop Network:
➭ Input: State variables
➭Output: Force on cart

xcart

vcart

vpole

θpole

