Question 1
(8 points)

Recall that the heuristic function in best-first search is f(n) = g(n) + h(n),
where g(n) is the exact cost of getting to the current node n, and h(n) is the
estimated minimum cost of getting from n to a goal state.

a (4 points) Suppose we run a greedy search algorithm with h(n) = —g(n).
What sort of search will the greedy search emulate?

The best nodes (those with the lowest scores), will be those with
the longest paths, so this emulates depth first search. A com-
mon mistake was to confuse greedy search with best first, or A*.
Greedy search uses f(n) = h(n). Since in this case h(n) = —g(n),
the deeper a node is in the tree, the better it’s f-cost will be.

A common mistake was to use f(n) = g(n) + h(n), which is the
formula for best-first, but not greedy search. In this case, f(n)
becomes 0, so the search is effectively random (actually, it de-
pends on the details of the queueing function.)

b (4 points) Prove that if the heuristic function h obeys the triangle inequal-
ity, then the f-cost along any path in the search tree is nondecreasing.
(The triangle inequality says that the sum of the costs from A to B and
B to C must not be less than the cost from A to C directly.)

Think of the triangle inequality as meaning that the direct route
from A to C is faster than the indirect route through B.

Nondecreasing f-cost along a path means that f of a successor
is always at least as large as that of the node:

f(n) < f(n)ifn' € S(n)
Substituting f(n) = g(n) + h(n) we get:
9(n) + h(n) < g(n') + h(n')ifn" € S(n)

Our goal is to show that this is implied by the triangle inequality.
The triangle inequality applied to a heuristic h(n) says that

h(n) < k(n,n') + h(n')

for any nodes n, n’, where k(n,n’') is the cost of the shortest path
from n to n'. Adding g(n) to both sides we get

g(n) + h(n) < g(n) + k(n,n") + h(n')

But if n' is a successor of n, then g(n) + k(n,n') is equal to g(n').



Name: solution

So

9(n) + h(n) < g(n') + h(n')
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Question 2

(8 4+ 4 bonus points)

Consider the following map coloring problem:

Cc2

C1

C5

Co

Figure 1: Assign each region one of the three colors (Red, Green or Blue) so
that no two adjacent regions have the same colors.

a (8 points) In class, we studied two heuristics for CSPs, least-constraining-
value and most-constrained-variable. Solve the graph coloring problem
above using these two heuristics and forward checking. (Show work on
back)

b (BONUS 4 points) Describe an additional heuristic that would be useful
in solving this problem.

If there is a tie for most-constrained-variable, as in the first
choice, use the most-constraining-variable, that is, the variable
whose assignment will add the most new constraints. For exam-
ple, using this heuristic it makes sense to select C4 first, since
it limits the choices for all other variables except C6. Several
people suggested using MOMS, this was OK, if you discuss con-
verting the problem to SAT.
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C4 = Red | Red | Green | Blue C5 = Green | Red | Green | Blue
C1 X C1 X
C2 X C2 X
C3 X C3 X X
C4 Vv C4 4 X
C5 X C5 X Vv
C6 C6 X

C3 = Blue | Red | Green | Blue C2 = Green | Red | Green | Blue
C1 X C1 X X
C2 X X C2 X v X
C3 X X Vv C3 X X Vv
C4 Vv X X C4 Vv X X
C5 X Vv X C5 X Vv X
C6 X X C6 X X

C1 = Blue | Red | Green | Blue C6 = Red | Red | Green | Blue
C1 X X Vi C1 X X v
C2 X Y X C2 X v X
C3 X X Vv C3 X X Vv
C4 Vv X X C4 Vv X X
C5 X Vv X C5 X Vv X
C6 X X Cé6 Vv X X

Table 1: CSP solution
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Question 3
(6 points)

Let us consider the problem of search in a three-player game. (You can assume
no alliances are allowed.) We will call the players 0, 1, and 2 for convenience.
Assume you have an evaluation function that returns a list of three values,
indicating (say) the likelihood of winning for players 0, 1 and 2, respectively.
Complete the following game tree by filling in the backed-up values for all re-
maining nodes including the root.

to move:
0 (123

/\

1 (12 3 (-152)

/\ /\

2 (123 (6 12) (-152) (545)

SN N N N

0 (123) 4210 612 (7 4-1) (5-1-1) (-152) (77-1) (545)

Figure 2: The first three ply of a game tree with three players (0, 1, and 2).

The important thing to understand is that each player will act so as
to maximize their score from the choices presented to them, and the
the score vectors are moved up the tree as units (no mixing) because
they represent the value to each player of a particular game.
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Question 4
(4 points)

Given the following, can you prove that the unicorn is mythical? How about
magical? Horned?

If the unicorn is mythical, then it is immortal, but if it is not
mythical, then it is a mortal mammal. If the unicorn is either im-
mortal or a mammal, then it is horned. The unicorn is magical if it
is horned.

First a proof by counterexample that you can’t prove that the uni-
corn is mythical:

It is consistent with the above sentences for the unicorn to be a non-
mythical, magical, mortal, horned mammal.

Now for the tedious version, let us define the following propositions:

MYTHICAL: The unicorn is mythical.

MORTAL: The unicorn is mortal (Which means that ~-MORTAL
translates as “The unicorn is immortal.”)

MAMMAL: The unicorn is a mammal.

HORNED: The unicorn is horned.

MAGICAL: The unicorn is magical.

‘We can now translate the statements above as:

MYTHICAL - -MORTAL

-MYTHICAL - MORTALANMAMMAL

(-MORTALV MAMMAL) - HORNED

HORNED - MAGICAL

First, we’ll look at the last two questions, which are easy. Since ei-
ther MYTHICAL or ~-MYTHICAL must be true, either ~-M ORT AL or
MORTALANMAMM AL must be true, which means that (-MORT ALV
MAMMAL) is true. By the third premise, this means that HORNED
is true, and by the fourth premise, M AGICAL is also true. So we can
prove MAGICAL and HORNED.

To prove MYTHICAL, we would have to to show that MORTAL A
MAMM AL is false. We could show this by denying either conjunct. If
we wanted to show MORT AL was false, we’d need to prove MYTHICAL
and use premise 1, but that would involve a circularity. If we try to
deny MAMM AL, the only way to do it would be to deny HORNED.
The only rule which could achieve that is the last, and we would have
to show "M AGICAL. Since there is no way to show that, this also
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fails. This exhausts the possibilities for proving MYTHICAL, so it is
unprovable from this set of sentences.
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Question 5
(6 points)

Consider a world in which there are only four propositions, A, B, C, and D.
How many models are there for the following sentences?

a (2 points) AA B

4 - A and B must be true, but C and D are unconstrained

HH A
HH AW
GRS RS e
SRRl

Table 2: Models for AN B

b (2 points) AV B

12 - There are three ways to satisfy AV B and for each one, four
models corresponding to all possible truth values for C and D.

¢ (2 points) ANBAC

2 - One where D is true and one where D is false.
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Question 6

(10 4 2 bonus points)

Here are two sentences in the language of first-order logic:
(A) VaTy(z > y)
(B) IyVa(z > y)

a (2 point) Assume that the variables range over all natural numbers 0,1,2,. .., oo,
and that the “>” predicate means “greater than or equal to.” Under this
interpretation, translate the these sentences into English.

The first sentence translates as “For every natural number, there
is some (other) natural number that it is greater than or equal
to.” The second, as “There is a specific natural number that is
less than than or equal to every natural number.”

b (1 point) Is (A) true under this interpretation?

Yes - for any natural number, you can pick itself as the “other”
number.

¢ (1 points) Is (B) true under this interpretation?

Yes - The number 0 has this property.

d (2 points) Does (A) logically entail (B)?

No, (A) does not logically entail (B). (Counterexample: Con-
sider the integers, A is true, but B is not.)

e (2 points) Does (B) logically entail (A)?
Yes, (B) logically entails (A)

f (2 points) Try to prove that (A) follows from (B) using resolution. Do
this even if you think that (B) does not logically entail (A); continue until
the proof breaks down and you cannot proceed (if it does break down).
Show the unifying substitution for each resolution step. If the proof fails,
explain exactly where, how and why it breaks down.

We set the knowledge base to the negation of (A) and (B). Again,
we convert both sentences to canonical form (which requires

introducing a Skolem constant for (A) and a Skolem function
for (B)):

(nA): =(F1 2 y)

(B): z > Fy

Resolving these clauses we use the substitution: {z/F,y/F>}.
This gives us:
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—|(F1 Z FZ) and F1 Z F2

Which does resolve, giving us False and proving that (B) entails
(A)
g (BONUS 2 points) Now try to prove that (B) follows from (A).

We set the knowledge base to (A) and the negation of (B). First
we convert both sentences to canonical form (which requires in-
troducing Skolem functions):

(A): z > Fi(z)

(-B): ~Fy(y) > y

Now we try to derive a contradiction. There are only two clauses,
so we try to unify them. The obvious unification would be:
{z/F>(y),y/Fi(z)}, but this is equivalent to {z/F>(y),y/Fi(F2(y))},
which fails because an expression containing y is being substi-
tuted for y. The resolution fails, and there are no other clauses
or unifications to try, so the proof fails.
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Question 7

(15 4+ 5 bonus points)

Two astronomers, in different parts of the world, make measurements M; and
Ms of the number of stars N in some small region of the sky, using their tele-
scopes. Normally, there is a small possibility of error by up to one star. Each
telescope can also (with a slightly smaller probability) be badly out of focus
(events F and F3), in which case, the scientist will undercount by three or
more stars. Consider the three networks shown below.

& W %E

0] (i) (iii)

Figure 3: Three possible networks for the telescope problem.

a (5 points) Which of these belief networks correctly (but not necessarily
efficiently) represent the above information?

Althrough (i) in some sense depicts the “flow of information”
during calculation, it is clearly incorrect as a network, since
it says that given the measurements 1/; and M, the number
of stars is independent of the focus. (ii) correctly represents
the causal structure: each measurement is influenced by the
actual number of stars and the focus, and the two telescopes
are independent of each other. (iii) shows a correct but more
complicated network — the one obtained by ordering the nodes
My, M5, N, Fy,F,. If you order M, before M; you would get the
same network except with the arrow from M; to M, reversed.

Many people confused the notion of correctly representing the
causal relationship with correctly representing the conditional
independence relation.

b (5 points) Which is the best network?

(ii) requires fewer parameters and is therefore better than (iii).
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(Many people wrote that (ii) is better because it is “more causally
accurate.” While this is true, it’s only part of the picture.

¢ (5 points) Give a reasonable conditional probability table for the values
of P(My|N). (For simplicity, consider only the possible values 1, 2, and 3
in this part.)

To compute P(M;|N), we will need to condition on F; (that is,
consider both possible cases for F;, weighted by their probabili-
ties.)

P(M;i|N) = P(M1|N, F1)P(Fi|N) + P(M;|N,-F,)P(—=Fi|N)

P(M;|N) = P(M;|N, F1)P(Fy) + P(M;|N,-F,)P(~Fy)

Let f be the probability that the telescope is out of focus. The
problem states that this will cause an “undercount of three or
more starts.” For N=3 or less stars, we assume this means the
count will be 0 if the telescope is out of focus. If it is in focus,
then we will assume there is a probability of ¢ of counting one
too few, and e of counting one too many. The rest of the time
(1 —2e), the count will be accurate. Then the table is as follows:

N=1 N=2 N=3
M, =0| f+e(l-}f) f f
Mi=1|(d-21=10| ed=p 0.0
M, =2 e(l-f) (1-2e)(1-f) e(l-f)
M, =3 0.0 e(l—f) 1-2e)(1-)
M =4 0.0 0.0 e(l —f)

Table 3: Conditional probabilities of M;|N

Notice that each column has to add up to 1. Reasonable values
for e and f might be 0.05 and 0.02.

(BONUS 5 points) Suppose M; = 1 and M, = 3. What are the possible
numbers of stars?

Consider all the possible values of the focus and off-by-one vari-
ables, and the implications each has on the resulting possible
values of N.

— If neither F| nor F, are true, then the only possible value
for N is 2 (astronomer 1 undercounts by 1 and astronomer
2 overcounts by 1).

— If F} is true and F; is false, then the only possible value
for N is 4 (astronomer 1 undercounts by 3, astronomer 2
undercounts by 1).
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— If F; if false, and F is true, then there is no consistent value
for N, so this can’t be the case.

— Finally, if both F; and F, are true, then the possible values
are N > 6, with astronomer 2 undercounting by i > 3 and
astronomer 1 undercounting by i + 2.
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Question 8

(10 4 3 bonus points)

Let the instance space be X = {0, 1}*, the training set be D = {(< 0,0,0,0 >,1)},
and the hypothesis space H be the set of conjunctions over X.

Notation: Let z; be the ith attribute, and —z denote “not z”.

a (4 points) Compute the cardinality of the version space of H over D,
|V SH,D|
|[VS| = 2* = 16 (VS = the set of conjunctions with all negated
literals

b (3 points) Derive the S and G frontiers using the candidate elimination
algorithm.
S = {—x1 A —x2 A —xz3 A —24} (singleton set), G = {True} (the null
conjunction)

¢ (3 points) Suppose you see the additional example (< 1,1,1,1 >,0). De-
rive the new S and G frontiers.
S = {—|:L'1 A —xo A 3 A —|:II4}, G = {—|.’L‘1,—|:L'2, —|.CC3,—|.’L‘4}

d (BONTUS 3 points) Suppose you see one more example, (< 0,1,1,1 >,1).
Derive the new S and G frontiers.

S ={-z1}, G={-21}
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Question 9
(4 points)

Suppose a training set is made up of 16 examples of class A, 8 examples of class
B, 32 examples of class C, and 8 examples of class D. When growing a decision
tree from this training set, what is the maximum information gain that any
attribute can have?

Consider a single attribute z that is perfectly correlated with the
class. I.e. =1=C=A4,22=2=C=B,z=3=C =CC, and
2z =4 =C = D. In this case, the entropy after splitting on this at-
tribute will be 0 (all subsets are pure.) So the maximum information
gain is the entropy of the training set - 0.

The entropy of the training set is:

16 16 8 8 32 32

8 8
_@10&(6_4) - @10&(6_4) ~ 61 10%2(6—4) 5 10%2(6_4)
1 2+1 3-1—1 1+1 3

4 8 2 8

_ 4,343

8 8 8 8

14

— =1.75

8

H(D)
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Question 10
(5 points)

Consider the following Bayesian network, in which variables A, B and C are
Boolean:

Suppose you want to learn the parameters for this network using the training
set {<0,1,1>,<1,0,0>,<1,1,1>,<1,?,0>}, where examples are in the
form < A,B,C >, and “?” indicates a missing value. Show the sequence of
filled-in values and parameters produced by the EM algorithm, assuming the
parameters are initialized by ignoring missing values. (Hint: EM converges very
quickly on this problem.)

Initialization:
P(A)=0.75
P(B|A)=05,P(B|—A) =1
P(C|B)=1,P(C|-B)=0

First iteration:
E step:

P(A,B,-C)
P(4,-C)
P(A)P(B|A)P(-C|B)
P(A)P(BJA)P(—C|B) + P(A)P(-B|A)P(—C| - B)
(0.75-0.5 - 0)
0+0.75-05-1)
=0

P(?7=1) P(B|A,—-C) =

So ? = 0 with probability 1. Compute conditional probabilities with
this substitution.

M step:

P(A)=0.75

P(B|A)=0.333...,P(B|—A4) =1

P(C|B)=1,P(C|-B)=0

Second iteration:
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E step:

P(A,B,—C)
P(Aa _C)
P(A)P(B|A)P(-C|B)

P(?=1) = P(B|A,-C)=

P(A)P(B|A)P(—C|B) + P(A)P(—B|A)P(—C| — B)
(0.75-0.333...-0)
(0+0.75-0.666...-1)
=0

M step: Same result as first iteration (converged).

17
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Question 12
(5 points)

Suppose you want to learn to recognize digits in a 7-segment LED display
from noisy examples (i.e., each segment has been flipped with 10% probabil-
ity). Which of the learning algorithms you studied would you use?

The best choice is naive Bayes, because the attributes (i.e., whether
each segment is on or off) are independent given the class (i.e.,
the digit), so naive Bayes is the optimal classifier for this problem.
Nearest-neighbor with overlap distance is also a reasonable solution,
and can be given half-credit. A general Bayes net can also be given
half-credit (it will have zero bias, like naive Bayes, but more variance,
and will also be slower). Likewise for a neural net with one output
per class and a ”max” function. Decision trees and rules are the least
appropriate.



