5/21/2013

GPU Architectures

A CPU Perspective

Derek Hower AMD Research 5/21/2013

Goals

Data Parallelism: What is it, and how to exploit it?
o Workload characteristics

Execution Models / GPU Architectures
o MIMD (SPMD), SIMD, SIMT

GPU Programming Models
o Terminology translations: CPU €-> AMD GPU € -> Nvidia GPU

° Intro to OpenCL

Modern GPU Microarchitectures
° i.e., programmable GPU pipelines, not their fixed-function predecessors

Advanced Topics: (Time permitting)
o The Limits of GPUs: What they can and cannot do
o The Future of GPUs: Where do we go from here?

GPU ARCHITECTURES: A CPU PERSPECTIVE 2

Data Parallel

Execution
on GPUs

Data Parallelism, Programming Models, SIMT

Graphics Workloads

Streaming computation

=-o- K

5/21/2013

5/21/2013

Graphics Workloads

Streaming computation on pixels

w O &d

GPU ARCHITECTURES: A CPU PERSPECTIVE 5

Graphics Workloads

Identical, Streaming computation on pixels

GPU ARCHITECTURES: A CPU PERSPECTIVE 6

5/21/2013

Graphics Workloads

Identical, Independent, Streaming computation on pixels

E-o-

GPU ARCHITECTURES: A CPU PERSPECTIVE 7

Architecture Spelling Bee

P-A-R-A-L-L-E-L
Spell
‘Independent’

GPU ARCHITECTURES: A CPU PERSPECTIVE 8

Generalize: Data Parallel Workloads

Identical, Independent computation on multiple data inputs

—{ coloryy: = f(coloryy) E
—{ coloryy: = f(coloryy) E‘ m
_+ coloryy: = f(coloryy,) E
—% coloryys = f(colory,) E m

GPU ARCHITECTURES: A CPU PERSPECTIVE 9

Naive Approach

Split independent work over multiple processors

CPUO

coloryy,: = f(colory,)

CPU1

color,y,: = f(colory,)

CPU2

color,y: = f(colory,)

CPU3

coloryy,: = f(colory,)

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

5/21/2013

Data Parallelism: A MIMD Approach
Multiple Instruction Multiple Data
Split independent work over multiple processors
0,7
Program CPUO
= f(coloriy)
1,7
Program CPU1
= f(coloryy,)
2,7
Program cpu2
= f(colory,)
3,7
Program CcpU3
= f(coloryy,)

GPU ARCHITECTURES: A CPU PERSPECTIVE

Data Parallelism: A MIMD Approach

Multiple Instruction Multiple Data

Split independent work over multiple processors

colorn,e | When work is identical (same program): ﬂ
= f(colory)

';rosram Single Program Multiple Data (SPMD) _.m
color,
= F(colory) (Subcategory of MIMD)

2,7

Program CcpU2
= f(coloryy,)

Program 0 Ccpu3
= f(coloripn)

GPU ARCHITECTURES: A CPU PERSPECTIVE

Data Parallelism: An SPMD Approach

Single Program Multiple Data

Split identical, independent work over multiple processors

Program
coloryys

= f(coloriy)

07 cpuo

Program
coloryys
= f(coloryy,)

L7 cru

Program
coloryys

= f(colory,)

2,7 CPU2

Program
coloryys

= f (coloriy)

37 cpu3

GPU ARCHITECTURES: A CPU PERSPECTIVE

Data Parallelism: A SIMD Approach

Single Instruction Multiple Data

Split identical, independent work over multiple execution units (lanes)

More efficient: Eliminate redundant fetch/decode

Execute | Memory | Writeback

Program
coloryys

= f(coloryy)

Writeback
Writeback

Execute | Memory

Fetch | Deco

Execute | Memory

Execute | Memory | Writeback

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

SIMD: A Closer Look

One Thread + Data Parallel Ops = Single PC, single register file

Execute \ Memory 4 Writeback
Program Execute NVIemory/ Writeback 0,0
coloryys Fetch | Deco -
= f(colory,) Execute Wemorf/ Writeback 0
Execute emofyf4 Writeback 40
v T
v [
Register File

GPU ARCHITECTURES: A CPU PERSPECTIVE 15

Data Parallelism: A SIMT Approach

Single Instruction Multiple Thread

Split identical, independent work over multiple lockstep threads

Multiple Threads + Scalar Ops > One PC, Multiple register files
0,7

WFO

2,7 —T—1—
(|

|
—

Program
[rech Dok
- f(csiorn

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

Terminology Headache #1

It’s common to interchange

‘SIMD’ and ‘SIMT’

Data Parallel Execution Models

MIMD/SPMD SIMD/Vector SIMT
Multiple independent One thread with wide Multiple lockstep threads
threads execution datapath

5/21/2013

Execution Model Comparison

MIMD/SPMD SIMD/Vector SIMT
Example .
Architecture Multicore CPUs x86 SSE/AVX GPUs
More general: Can mix sequential Easier to program
supports TLP & parallel code Gather/Scatter
Pros operations

Inefficient for data Gather/Scatter can Divergence kills
Cons parallelism be awkward performance

GPU ARCHITECTURES: A CPU PERSPECTIVE 19

GPUs and Memory

Recall: GPUs perform Streaming computation =

Streaming memory access

=-o- K

DRAM latency: 100s of GPU cycles

How do we keep the GPU busy (hide memory latency)?

GPU ARCHITECTURES: A CPU PERSPECTIVE 20

5/21/2013

10

Hiding Memory Latency

Options from the CPU world:

Cachres— x
> Need spatial/temporal locality

> Need ILP

Multicore/Multithreading/SMT ‘/
> Need independent threads

GPU ARCHITECTURES: A CPU PERSPECTIVE

Multicore Multithreaded SIMT

Many SIMT “threads” grouped together into GPU “Core”

SIMT threads in a group = SMT threads in a CPU core
> Unlike CPU, groups are exposed to programmers

Multiple GPU “Cores”

GPU

GPU “Core” GPU “Core”

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

11

Multicore Multithreaded SIMT

Many SIMT “threads” grouped together into GPU “Core”

SIMT threads in a group = SMT threads in a CPU core
> Unlike CPU, groups are exposed to programmers

Multiple GPU “Cores”

This is a GPU Architecture (Whew!)

GPU

GPU “Core”

b

GPU “Core”

i

GPU ARCHITECTURES: A CPU PERSPECTIVE

Terminology Headaches #2-5

Nvidia/CUDA
% CUDA Processor
% CUDA Core
GPU “Core”
Streaming
Multiprocessor
GPU
Group Group

RE) RE

GPU Device

AMD/OpenCL

Processing Element

SIMD Unit

Compute Unit

GPU Device

GPU ARCHITECTURES: A CPU PERSPECTIVE

Derek’s CPU Analogy

Lane

Pipeline

Core

Device

5/21/2013

12

GPU Programming
Models

OpenCL

GPU ARCHITECTURES: A CPU PERSPECTIYE

GPU Programming Models

CUDA - Compute Unified Device Architecture
> Developed by Nvidia -- proprietary
o First serious GPGPU language/environment

OpenCL — Open Computing Language
> From makers of OpenGL
> Wide industry support: AMD, Apple, Qualcomm, Nvidia (begrudgingly), etc.

C++ AMP - C++ Accelerated Massive Parallelism
> Microsoft
° Much higher abstraction that CUDA/OpenCL

OpenACC - Open Accelerator
o Like OpenMP for GPUs (semi-auto-parallelize serial code)
> Much higher abstraction than CUDA/OpenCL

5/21/2013

13

GPU Programming Models

: CUDA - Compute Unified Device Architecture
1 © Developed by Nvidia -- proprietary
1

o First serious GPGPU language/environment

OpenCL — Open Computing Language
> From makers of OpenGL
o Wide industry support: AMD, Apple, Qualcomm, Nvidia (begrudgingly), etc.

C++ AMP — C++ Accelerated Massive Parallelism
° Microsoft
> Much higher abstraction that CUDA/OpenCL

OpenACC — Open Accelerator
o Like OpenMP for GPUs (semi-auto-parallelize serial code)
> Much higher abstraction than CUDA/OpenCL

OpenCL

Early CPU languages were light abstractions of physical hardware
° Eg.,C

Early GPU languages are light abstractions of physical hardware
° OpenCL + CUDA

GPU ARCHITECTURES: A CPU PERSPECTIVE 28

5/21/2013

14

OpenCL

Early CPU languages were light abstractions of physical hardware

° Eg.,C

Early GPU languages are light abstractions of physical hardware
° OpenCL + CUDA

GPU Architecture

GPU

GPU “Core”

b

GPU “Core”

ik

GPU ARCHITECTURES: A CPU PERSPECTIVE

OpenCL

Early CPU languages were light abstractions of physical hardware

° Eg.,C

Early GPU languages are light abstractions of physical hardware
° OpenCL + CUDA

GPU Architecture OpenCL Model
GPU NDRange
GPU “Core” GPU “Core” Workgroup Workgroup
% % A\\//4 l
A\
Work-item Wavefront

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

15

5/21/2013

NDRange

N-Dimensional (N =1, 2, or 3) index space
o Partitioned into workgroups, wavefronts, and work-items

NDRange

Workgroup Workgroup

Y

GPU ARCHITECTURES: A CPU PERSPECTIVE 31

Kernel

Run an NDRange on a kernel (i.e., a function)

Same kernel executes for each work-item
> Smells like MIMD/SPMD

Kernel
A

[)
:'/(Ve(:‘:k{ _-* colotyy: = f(coloryy,) }—*
:i\;c:\:k{ _~+ coloryy: = f(coloryy) }—*
:i\g:;k{ _~+ coloryy: = f(coloriy) }—-
:i\g:k{ _-4 coloryy: = f(coloriy) }—~

GPU ARCHITECTURES: A CPU PERSPECTIVE 32

16

5/21/2013

Workgroup

Kernel

Run an NDRange on a kernel (i.e., a function)

Same kernel executes for each work-item
> Smells like MIMD/SPMD...but beware, it’s not!

Kernel

A
_ [)
::\g:;k{ _+ coloryy: = f(coloryy,) }—t
ji\(/:\:k{ _ﬁ coloryy,: = f(coloryy,) ’—0 m
F:i\g\:k{ _+ colotyy: = f(coloryy) }—~
&:i\g:\:k{ —{ coloryy: = f(coloriy) }—o m

Wavefront

A

Wavefront
I\

[

GPU ARCHITECTURES: A CPU PERSPECTIVE 33

OpenCL Code

__kernel

void flip_and_recolor(__global float3 **in_image,
__global float3 **out_image,
int img_dim_x, int img_dim_y)

{
int x = get_global_id(1); // get work-item id in dim 1
int y = get_global_id(2); // get work-item id in dim 2
out_image[img_dim_x - x][img_dim_y - y] =
recolor(in_image[x][y]);
}

GPU ARCHITECTURES: A CPU PERSPECTIVE 34

17

Terminology Headaches #6-9

CUDA/Nvidia OpenCL/AMD Henn&Patt
Sequence of
Thread Work-item SIMD Lane
Operations
Thread of
Warp Wavefront SIMD
Instructions

Group

Body of
Block Workgroup vectorized
loop
GPU
Group Group . d
% % % %%@ Grid NDRange Vectorize
A W loop

GPU ARCHITECTURES: A CPU PERSPECTIVE 35

GPU
Microarchitecture

AMD Graphics Core Next

GPU ARCHITECTURES: A CPU PERSPECTB/E

5/21/2013

18

GPU Hardware Overview

GPU

GPU

GPU “Core”

GPU “Core”

GDDRS5

L2 Cache

SIMT
SIMT
SIMT
SIMT

Local Memory

L1 Cache L1 Cache

GPU ARCHITECTURES: A CPU PERSPECTIVE

Compute Unit— A GPU Core

Compute Unit (CU) — Runs Workgroups
> Contains 4 SIMT Units
> Picks one SIMT Unit per cycle for scheduling

SIMT Unit — Runs Wavefronts
o Each SIMT Unit has 10 wavefront instruction buffer
> Takes 4 cycles to execute one wavefront

EEEN

SIMT
SIMT
SIMT
SIMT

10 Wavefront x 4 SIMT Units =
40 Active Wavefronts / CU

64 work-items / wavefront x 40 active wavefronts =
2560 Active Work-items / CU

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

19

Time

CU Timing Diagram

On average: fetch & commit one wavefront / cycle

SIMTO SIMT1 SIMT2 SIMT3

GPU ARCHITECTURES: A CPU PERSPECTIVE

SIMT Unit — A GPU Pipeline

Like a wide CPU pipeline — except one fetch for entire width

16-wide physical ALU
> Executes 64-wavefront over 4 cycles. Why??

64KB register state / SIMT Unit
o Compare to x86 (Bulldozer): ~1KB of physical register file state (~1/64 size)

Address Coalescing Unit
> A key to good memory performance

<
<
<
<

Registers B
Registers &=
Registers &=
Registers &=
Registers &=
Registers &=
Registers &=
Registers &=
Registers B=
Registers B=
Registers B=
Registers B
Registers B
Registers B
Registers B
Registers B

Address Coalescing Unit

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

20

Address Coalescing

Wavefront: Issue 64 memory requests

NDRange

Workgroup Workgroup

Y

GPU ARCHITECTURES: A CPU PERSPECTIVE

Address Coalescing

Wavefront: Issue 64 memory requests

Common case:
o work-items in same wavefront touch same cache block

Coalescing:
> Merge many work-items requests into single cache block request

Important for performance:
° Reduces bandwidth to DRAM

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

21

GPU Memory

GPUs have caches.

GPU ARCHITECTURES: A CPU PERSPECTIVE

Not Your CPU’s Cache

By the numbers: Bulldozer — FX-8170 vs. GCN — Radeon HD 7970

T o s

L1 data cache capacity 16KB
Active threads (work-items) 1
sharing L1 D Cache

L1 dcache capacity / thread 16KB

Last level cache (LLC) capacity 8MB

Active threads (work-items) 8
sharing LLC
LLC capacity / thread 1MB

GPU ARCHITECTURES: A CPU PERSPECTIVE

16 KB
2560

6.4 bytes

768KB
81,920

9.6 bytes

5/21/2013

22

5/21/2013

GPU Caches

Maximize throughput, not hide latency
> Not there for either spatial or temporal locality

L1 Cache: Coalesce requests to same cache block by different work-items
° i.e., streaming thread locality?
o Keep block around just long enough for each work-item to hit once
o Ultimate goal: Reduce bandwidth to DRAM

L2 Cache: DRAM staging buffer + some instruction reuse
o Ultimate goal: Tolerate spikes in DRAM bandwidth

If there is any spatial/temporal locality:
> Use local memory (scratchpad)

GPU ARCHITECTURES: A CPU PERSPECTIVE 45

Scratchpad Memory
GPUs have scratchpads (Local Memory)

o Separate address space
> Managed by software:
° Rename address

> Manage capacity — manual fill/eviction .'.5.
Allocated to a workgrou
sroup Local Memory

> i.e., shared by wavefronts in workgroup

SIMT
SIMT
SIMT
SIMT

GPU ARCHITECTURES: A CPU PERSPECTIVE 46

23

5/21/2013

Terminology Headache #10
GPUs have scratchpads (Local Memory)

> Separate address space
'_
> Managed by software: S
(%]

° Rename address
° Manage capacity — manual fill/eviction

@ ETE

Local Memory

Allocated to a workgroup
° i.e., shared by wavefronts in workgroup

Nvidia calls ‘Local Memory’
‘Shared Memory’.

AMD sometimes calls it ‘Group Memory’.

GPU ARCHITECTURES: A CPU PERSPECTIVE

Example System: Radeon HD 7970

High-end part

32 Compute Units:
> 81,920 Active work-items
© 32 CUs * 4 SIMT Units * 16 ALUs = 2048 Max FP ops/cycle
° 264 GB/s Max memory bandwidth

925 MHz engine clock
o 3.79 TFLOPS single precision (accounting trickery: FMA)

210W Max Power (Chip)
o >350W Max Power (card)
> 100W idle power (card)

GPU ARCHITECTURES: A CPU PERSPECTIVE 48

24

Radeon HD 7990 - Cooking

Two 7970s on one card:
375W (AMD Official) — 450W (OEM)

GPU ARCHITECTURES: A CPU PERSPECTIVE

Recap

Data Parallelism: Identical, Independent work over multiple data inputs
> GPU version: Add streaming access pattern

Data Parallel Execution Models: MIMD, SIMD, SIMT
GPU Execution Model: Multicore Multithreaded SIMT

OpenCL Programming Model
> NDRange over workgroup/wavefront

Modern GPU Microarchitecture: AMD Graphics Core Next (GCN)
o Compute Unit (“GPU Core”): 4 SIMT Units
o SIMT Unit (“GPU Pipeline”): 16-wide ALU pipe (16x4 execution)
° Memory: designed to stream

GPUs: Great for data parallelism. Bad for everything else.

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

25

Advanced Topics

GPU Limitations, Future of GPGPU

Choose Your Own Adventure!

SIMT Control Flow & Branch Divergence

Memory Divergence

When GPUs talk
> Wavefront communication
> GPU “coherence”
> GPU consistency

Future of GPUs: What'’s next?

5/21/2013

26

SIMT Control Flow

Consider SIMT conditional branch:
° One PC
> Multiple data (i.e., multiple conditions)

if (x <= 0) ?
y = 0;
-

y = X;

SIMT Control Flow

Work-items in wavefront run in lockstep
o Don’t all have to commit

Branching through predication

% Active lane: commit result % Inactive lane: throw away result

«<—————— All lanes active at start: 1111

if (x <= 0) — “———— Branch > set execution mask: 1000
y = 0;
else — | . .
y = x Else = invert execution mask: 0111
— +«——— Converge > Reset execution mask: 1111

5/21/2013

27

SIMT Control Flow

Work-items in wavefront run in lockstep
o Don’t all have to commit

Branching through predication

% Active lane: commit result % Inactive lane: throw away result

pa——

Branch divergence

Branch = set execution mask: 1000

if (x <= 0) —
y = 0;
else . .
y = X; Else = invert execution mask: 0111
’

Converge > Reset execution mask: 1111

Branch Divergence

When control flow diverges, all lanes take all paths

Divergence Kills Performance

GPU ARCHITECTURES: A CPU PERSPECTIVE 56

5/21/2013

28

Beware!

Divergence isn’t just a performance problem:

__global int Tock = false;

__kernel
void spinlock_Tock(.)
{
// acquire lock
while (lock == false) {
// cas = compare and swap:
// atomically {
// if (Tock == false)
// lock = true;
// 3
atomic_cas(lock, false, true);
}
}

GPU ARCHITECTURES: A CPU PERSPECTIVE

Memory Bandwidth

SIMT DRAM

v’ -- Parallel Access

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

29

Memory Bandwidth

SIMT DRAM

x -- Sequential Access

Memory Bandwidth

Memory divergence

SIMT DRAM

% -- Sequential Access

5/21/2013

30

5/21/2013

Memory Divergence

One work-item stalls = entire wavefront must stall
o Cause: Bank conflicts, cache misses

Data layout & partitioning is important

GPU ARCHITECTURES: A CPU PERSPECTIVE 61

Memory Divergence

One work-item stalls = entire wavefront must stall
o Cause: Bank conflicts, cache misses

Data layout & partitioning is important

Divergence Kills Performance

GPU ARCHITECTURES: A CPU PERSPECTIVE 62

31

Communication and Synchronization

Work-items can communicate with:
> Work-items in same wavefront
> No special sync needed...they are lockstep!
o Work-items in different wavefront, same workgroup
° Local barrier
o Work-items in different wavefront, different workgroup

> OpenCL 1.x: Nope
> CUDA 4.x: Yes, but complicated

GPU ARCHITECTURES: A CPU PERSPECTIVE 63

GPU Consistency Models

Very weak guarantee:
> Program order respected within single work-item
o All other bets are off

Safety net:
> Fence — “make sure all previous accesses are visible before proceeding”
° Built-in barriers are also fences

A wrench:
o GPU fences are scoped — only apply to subset of work-items in system

o E.g., local barrier

Take-away: confusion abounds

GPU ARCHITECTURES: A CPU PERSPECTIVE 64

5/21/2013

32

GPU Coherence?

Notice: GPU consistency model does not require coherence
° i.e., Single Writer, Multiple Reader

Marketing claims they are coherent...

GPU “Coherence”:
> Nvidia: disable private caches
o AMD: flush/invalidate entire cache at fences

GPU ARCHITECTURES: A CPU PERSPECTIVE

GPU Architecture Research

Blending with CPU architecture:
> Dynamic scheduling / dynamic wavefront re-org
> Work-items have more locality than we think

Tighter integration with CPU on SOC:
° Fast kernel launch
o Exploit fine-grained parallel region: Remember Amdahl’s law

> Common shared memory

Reliability:
° Historically: Who notices a bad pixel?
o Future: GPU compute demands correctness

Power:
> Mobile, mobile mobile!!!

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

33

Computer Economics 101

GPU Compute is cool + gaining steam, but...
° Is a 0 billion dollar industry (to quote Mark Hill)

GPU design priorities:

1. Graphics
2. Graphics
N-1. Graphics

N. GPU Compute

Moral of the story:
o GPU won’t become a CPU (nor should it)

GPU ARCHITECTURES: A CPU PERSPECTIVE

5/21/2013

34

