
1

Cache Coherency

The issue:

• must guarantee that all processors see correct data despite
multiple readers & writers

• in a nutshell, how to make writes by one processor show up in
other processor caches

Cache coherent processors

• all reading processors must get the most current value

• most current value for an address is the last write (in program
order)

Cache coherency problem

• update from a writing processor is not known to other processors

Spring 2011 1 CSE 471 - Cache Coherence

A Low-end MP

Spring 2011 2 CSE 471 - Cache Coherence

P P

Shd. Cache

Memory

2

Cache Coherency

Cache coherency protocols

• (usually) hardware mechanism for maintaining cache coherency

• coherency state associated with a cache block of data

• operations on shared data change the state

• for the processor that initiates an operation

• for other processors that have the data of that operation
resident in their caches

• two general types

• snooping with a bus

• directory with a multi-path interconnect

• In sum, hardware implementation for:

• sharing state of each cache block

• rules for changing this state in response to memory operations

• implemented as a state transition diagram

Spring 2011 3 CSE 471 - Cache Coherence

Write-Invalidate Protocols

• Processor obtains exclusive access for writes (becomes the
“owner”) by invalidating data in other processors’ caches

• Coherency miss (invalidation miss)

• Cache-to-cache transfers

• good for:

• multiple writes to same word or block by one processor

• exploits migratory sharing from processor to processor or
processor locality

Spring 2011 4 CSE 471 - Cache Coherence

3

A Low-end MP

Spring 2011 5 CSE 471 - Cache Coherence

Cache Coherency Protocol Implementations

Snooping

• used with low-end MPs

• few processors

• centralized memory

• bus-based (broadcast)

• distributed implementation: responsibility for maintaining coherence
lies with each processor cache

Directory-based

• used with higher-end MPs

• more processors

• distributed memory

• multi-path interconnect (point-to-point)

• distributed implementation: responsibility for maintaining coherence
lies with the directory for each address

Spring 2011 6 CSE 471 - Cache Coherence

4

Snooping Implementation

A distributed coherency protocol

• coherency state associated with each cache block

• each cache controller (the “snoop”) maintains coherency for its own
cache

• compare address on the bus with address in cache

• response depends on coherency state

Spring 2011

7

CSE 471 - Cache Coherence

CPU

D
$

 d
at

a

D
$

 t
ag

s

CC

bus

Snooping Implementation

How the bus is used

• broadcast medium

• entire coherency operation is atomic wrt other processors

• keep-the-bus protocol:

• master holds the bus until the entire operation has
completed

• do not initiate another operation while one is in progress

• split-transaction protocol :

• request & response are different phases

• state values that indicate that an operation is in progress

• do not initiate another operation for a cache block that has
one in progress

Spring 2011 8 CSE 471 - Cache Coherence

5

Snooping Implementation

Snoop implementation:

• snoop on the highest level cache

• another reason L2 is physically-accessed

• property of inclusion:

• all blocks in L1 are in L2

• therefore only have to snoop on L2

• may need to update L1 state if change L2 state

• separate tags & state for snoop lookups

• processor & snoop communicate for a state or tag change

Spring 2011 9 CSE 471 - Cache Coherence

An Example Snooping Protocol

Each cache block is in one of three states

• shared:

• clean in all caches & up-to-date in memory

• block can be read by any processor

• exclusive:

• dirty in exactly one cache

• only that processor can read/write to it

• invalid:

• block contains no valid data

Spring 2011 10 CSE 471 - Cache Coherence

6

State Transitions for a Given Cache Block

State transitions caused by:

• events caused by the requesting processor, e.g.,

• read miss (go from invalid to shared)

• write miss (go from invalid to exclusive)

• write on shared block (go from shared to exclusive)

• events caused by snoops of other caches, e.g.,

• read miss by P1 makes P2’s owned block change from

exclusive to shared

• write miss by P1 makes P2’s owned block change from

exclusive to invalid

Spring 2011 11 CSE 471 - Cache Coherence

State Machine (CPU side)

Invalid
Shared

(read/only)

Exclusive

(read/write)

CPU load miss

CPU store miss

CPU load hit

Bus read

Bus write

CPU read miss

Bus read

Write-back cache block

CPU store

Bus write

CPU load miss

Bus read

CPU store miss

Bus write

Write-back cache block

CPU load hit

CPU store hit
Spring 2011 12 CSE 471 - Cache Coherence

7

State Machine (Bus side: the snoop)

Invalid
Shared

(read/only)

Exclusive

(read/write)

Write miss for this block

Write-back the block
Read miss for this block

Write-back the block

Write miss

for this block

Spring 2011 13 CSE 471 - Cache Coherence

Scalable Cache Coherence

Not a bus! Not snooping!

• one operation at a time

• snooping requires broadcasting all operations

• fine for 2 or 4 processors

Alternatives:

• multiple operations at a time

• point-to-point communication (most snoops result in no action)

• hundreds of processors

Spring 2011 14 CSE 471 - Cache Coherence

8

Directory Implementation

Distributed memory machine

• processor-memory pairs are connected via a multi-path
interconnection network

• point-to-point communication

• snooping with broadcasting is wasteful of the parallel
communication capability

• each processor (or cluster of processors) has its own portion of
physical memory

• a processor has fast access to its local memory & slower access to
“remote” memory located at other processors

• NUMA (non-uniform memory access) machines

Spring 2011 15 CSE 471 - Cache Coherence

A High-end MP

Proc

Interconnection network

$ Proc $ Proc $

Proc $ Proc $ Proc $

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

Spring 2011 16 CSE 471 - Cache Coherence

9

Directory Implementation

Coherency state is associated with units of memory that are the size of
cache blocks: directory state

• each directory tracks the state of the units in its memory & updates
their coherency state

• invalid:

• no processor has the data cached & memory is up-to-date

• shared:

• at least 1 processor has the data cached & memory is up-
to-date

• block can be read by any processor

• exclusive:

• only 1 processor (the owner) has the data cached &
memory is stale

• only that processor can write to it

• directory tracks which processors share its memory blocks

• vector of presence bits (1/processor) to indicate which
processor(s) has cached the data

• dirty bit to indicate if exclusive

Spring 2011 17 CSE 471 - Cache Coherence

Directory Implementation

Different nodes have different uses when maintaining coherency

• home node: where the memory location of an address resides (and
cached data may be there too)

• local node: where the memory request initiated

• remote node: an alternate location for the data, if the processor
has previously requested & cached it

In satisfying a memory request:

• messages sent between the different nodes in point-to-point
communication

• home node identified by the data memory address

• messages get explicit replies

Some simplifying assumptions for using the protocol

• processor blocks until the access is complete

• messages processed in the order received

Spring 2011 18 CSE 471 - Cache Coherence

10

Read Miss for an Uncached Block

P2

Mem Mem

Mem

Interconnection network

$ P3 $

P0 $ P1 $

1: read miss

2: data value reply
 Mem

 Dir

 Mem

 Dir

Spring 2011 19 CSE 471 - Cache Coherence

Read Miss for an Exclusive, Remote Block

P2

Mem

Interconnection network

$ P3 $

P0 $ P1 $

1: read miss

4: data value reply

2: fetch Mem

 Dir

 Mem

 Dir

 Mem

 Dir

3: data write-back

Spring 2011 20 CSE 471 - Cache Coherence

11

Write Miss for an Exclusive, Remote Block

P2

Mem Mem

Interconnection network

$ P3 $

P0 $ P1 $

1: write miss

4: data value reply
3: data write-back

2: fetch & invalidate Mem

 Dir

 Mem

 Dir

 Mem

 Dir

Spring 2011 21 CSE 471 - Cache Coherence

Directory Protocol Messages

Message type Source Destination Message Content

Read miss Local cache Home directory P, A

– Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A

– Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.

Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory; invalidate the block in
the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory (read or write miss response)

Data write-back Remote cache Home directory A, Data

– Write-back a data value for address A (invalidate response)

 Spring 2011 22 CSE 471 - Cache Coherence

12

Evaluating the Performance of Directory Schemes

Greater bandwidth capability

• multiple paths

• not contacting processors not involved in the memory operation

Longer operation latency

• extra hops

• acking

• subtle correctness issues because multipath network is unordered

Spring 2011 23 CSE 471 - Cache Coherence

Directory FSM for a Memory Block

Tracks all copies of a memory block

Makes two state changes:

• update coherency state (same as for snooping protocol)

• alter the number of sharers in the sharing set

Spring 2011 24 CSE 471 - Cache Coherence

13

Directory FSM for a Memory Block (Home)

(Data write-back)

Sharers = {}

Uncached
Shared

(read only)

Read miss

Send data reply

Sharers = {P}, W = 0

Write miss

Send invalidate to all

sharers

Sharers = {P}, W = 1

Write miss

Send data reply

Sharers = {P}, W = 1

Read miss

Send data reply

Sharers += {P}, W = 0

Spring 2011 25 CSE 471 - Cache Coherence

Write miss

Send fetch/invalidate to

owner

(Data write-back)

Send data reply

Sharers = {P}, W = 1

Read miss

Send data fetch to owner

(Data write-back)

Send data reply

Sharers += {P}, W = 0

Exclusive

(read/write)

CPU FSM for a Cache Block

Same coherency states as for the directory FSM

Transactions very similar to snooping implementations

• read & write misses sent to home directory

• invalidate & data fetch requests to the node with the data replace

broadcasted read/write misses

Spring 2011 26 CSE 471 - Cache Coherence

14

CPU FSM for a Cache Block

Fetch/Invalidate

Invalidate
Invalid

Shared

(read/only)

Exclusive

(read/write)

CPU read miss

CPU read hit

CPU write

miss

CPU write hit or miss

CPU write hit

CPU read hit

CPU read miss

CPU write miss

CPU read hit

Fetch

Spring 2011 27 CSE 471 - Cache Coherence

Read miss

Coherence on High-end Machines

How cache coherency is handled

• * hardware directories that record cache block state (most others)

• no caches (early Cray MTA)

• disallow caching of shared data (Cray 3TD)

• software (compiler-based) coherence (research machines)

Spring 2011 28 CSE 471 - Cache Coherence

15

False Sharing

Processors read & write to different words in a shared cache block

• cache coherency is maintained on a cache block basis

• processes share cache blocks, not data

• block ownership bounces between processor caches

Spring 2011 29 CSE 471 - Cache Coherence

A Low-end MP

Spring 2011 30 CSE 471 - Cache Coherence

16

False Sharing

Impact aggravated by:

• larger block size: why?

• larger cache size: why?

• large miss penalties: why?

Reduced by:

• coherency protocols (coherency state per subblock)

• let cache blocks become incoherent as long as there is only
false sharing

• make them coherent if any processor true shares

• compiler optimizations (group & transpose, cache block padding)

• cache-conscious programming wrt initial data structure layout

Spring 2011 31 CSE 471 - Cache Coherence

Important Issues

Cache coherency:

• its definition

• the hardware support

• write-invalidate protocols

• how bus-based protocols work

• how directories work

• how coherency protocols match or take advantage of the MP
design

Adding to our knowledge:

• a 4th type of miss (coherency misses)

• a 3rd locality (processor)

• a 2nd application of snooping (bus-based coherency protocol)

• a 2nd use of sub-block placement

• a 2nd latency vs. throughput trade-off

Spring 2011 32 CSE 471 - Cache Coherence

17

Important Issues

Anything in red or green:

• 2 bus protocols

• inclusion property

• UMA vs. NUMA

• role of local, home, remote nodes

• bus vs. multipath

• snooping vs. directory

• snooping in a coherency protocol vs. snooping in Tomasulo’s
algorithm

• false sharing: why it occurs, what makes it worse, how to fix

Spring 2011 33 CSE 471 - Cache Coherence

Apply What You Know

A different 4th state:

• what triggers state transitions

• what are the state changes, given a sequence of memory
operations

A protocol that isn’t based on invalidations:

• what triggers state transitions

• what are the state changes, given a sequence of memory
operations

Spring 2011 34 CSE 471 - Cache Coherence

18

Apply What You Know

Example:

Spring 2011 35 CSE 471 - Cache Coherence

Assume you have a 4-state, write-invalidate protocol, in which three of the states

are those used in the baseline 3-state protocol we studied in class and the fourth

state is a new one, called private clean. A private clean state means that there is

only one cached copy of the data, and that it is a read-only copy (i.e., it has the

same value as its backup in memory). Using this new 4-state coherency protocol,

fill in the state values for a single cache block in each of the processors (P0, P1,

P2), for each of the memory operations listed in the first column. For this question,

you can assume the multiprocessor is bus-based.

Operations P0 P1 P2

Initially invalid invalid invalid

P1: loads B

P2: loads B

P0: stores B

P1: loads B

P1: stores B

