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Cache Coherency 

The issue: 

• must guarantee that all processors see correct data despite 
multiple readers & writers 

• in a nutshell, how to make writes by one processor show up in 
other processor caches 

 

Cache coherent processors 

• all reading processors must get the most current value 

• most current value for an address is the last write (in program 
order)  

 

Cache coherency problem 

• update from a writing processor is not known to other processors 
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Cache Coherency 

Cache coherency protocols 

• (usually) hardware mechanism for maintaining cache coherency  

• coherency state associated with a cache block of data 

• operations on shared data change the state 

• for the processor that initiates an operation 

• for other processors that have the data of that operation 
resident in their caches 

• two general types 

• snooping with a bus 

• directory with a multi-path interconnect 

 

• In sum, hardware implementation for: 

• sharing state of each cache block 

• rules for changing this state in response to memory operations 

• implemented as a state transition diagram 
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Write-Invalidate Protocols 

 

• Processor obtains exclusive access for writes (becomes the 
“owner”) by invalidating data in other processors’ caches 

• Coherency miss (invalidation miss) 

• Cache-to-cache transfers 

• good for: 

• multiple writes to same word or block by one processor 

• exploits migratory sharing from processor to processor or 
processor locality 
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A Low-end MP 
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Cache Coherency Protocol Implementations 

Snooping  

• used with low-end MPs 

• few processors  

• centralized memory 

• bus-based (broadcast) 

• distributed implementation: responsibility for maintaining coherence 
lies with each processor cache 

 

Directory-based 

• used with higher-end MPs 

• more processors  

• distributed memory 

• multi-path interconnect (point-to-point) 

• distributed implementation: responsibility for maintaining coherence 
lies with the directory for each address 
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Snooping Implementation 

 

 

A distributed coherency protocol 

• coherency state associated with each cache block 

• each cache controller (the “snoop”) maintains coherency for its own 
cache 

• compare address on the bus with address in cache 

• response depends on coherency state 

 

Spring 2011 

7 

CSE 471 - Cache Coherence 

CPU 

D
$

 d
at

a 

D
$

 t
ag

s 

CC 

bus 

Snooping Implementation 

 

How the bus is used 

• broadcast medium 

• entire coherency operation is atomic wrt other processors 

• keep-the-bus protocol:  

• master holds the bus until the entire operation has 
completed 

• do not initiate another operation while one is in progress 

• split-transaction protocol :  

• request & response are different phases 

• state values that indicate that an operation is in progress 

• do not initiate another operation for a cache block that has 
one in progress 
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Snooping Implementation 

Snoop implementation: 

• snoop on the highest level cache 

• another reason L2 is physically-accessed 

• property of inclusion:  

• all blocks in L1 are in L2 

• therefore only have to snoop on L2 

• may need to update L1 state if change L2 state 

• separate tags & state for snoop lookups 

• processor & snoop communicate for a state or tag change 
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An Example Snooping Protocol 

Each cache block is in one of three states 

• shared: 

• clean in all caches & up-to-date in memory 

• block can be read by any processor 

• exclusive:  

• dirty in exactly one cache 

• only that processor can read/write to it 

• invalid:  

• block contains no valid data 
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State Transitions for a Given Cache Block 

State transitions caused by: 

•  events caused by the requesting processor, e.g., 

•  read miss (go from invalid to shared) 

•  write miss (go from invalid to exclusive) 

•  write on shared block (go from shared to exclusive) 

•  events caused by snoops of other caches, e.g., 

•  read miss by P1 makes P2’s owned block change from 

exclusive to shared 

•  write miss by P1 makes P2’s owned block change from 

exclusive to invalid 
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State Machine (CPU side) 

Invalid 
Shared 

(read/only) 

Exclusive 

(read/write) 

CPU load miss 

CPU store miss 

CPU load hit 

Bus read 

Bus write 

CPU read miss 

Bus read 

Write-back cache block 

CPU store  

Bus write 

CPU load miss 

Bus read 

CPU store miss 

Bus write 
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CPU load hit 

CPU store hit 
Spring 2011 12 CSE 471 - Cache Coherence 



7 

State Machine (Bus side: the snoop) 

Invalid 
Shared 

(read/only) 

Exclusive 

(read/write) 

Write miss for this block 

Write-back the block 
Read miss for this block 

Write-back the block 

Write miss  

for this block 
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Scalable Cache Coherence 

 

Not a bus! Not snooping! 

• one operation at a time 

• snooping requires broadcasting all operations 

• fine for 2 or 4 processors 

 

Alternatives: 

• multiple operations at a time 

• point-to-point communication (most snoops result in no action) 

• hundreds of processors 
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Directory Implementation 

 

Distributed memory machine 

• processor-memory pairs are connected via a multi-path 
interconnection network 

• point-to-point communication 

• snooping with broadcasting is wasteful of the parallel 
communication capability 

• each processor (or cluster of processors) has its own portion of 
physical memory 

• a processor has fast access to its local memory & slower access to 
“remote” memory located at other processors 

• NUMA (non-uniform memory access) machines 

 

 

Spring 2011 15 CSE 471 - Cache Coherence 

A High-end MP 
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Directory Implementation 

Coherency state is associated with units of memory that are the size of 
cache blocks: directory state 

• each directory tracks the state of the units in its memory & updates 
their coherency state 

• invalid:  

• no processor has the data cached & memory is up-to-date 

• shared: 

• at least 1 processor has the data cached & memory is up-
to-date 

• block can be read by any processor 

• exclusive:  

• only 1 processor (the owner) has the data cached & 
memory is stale 

• only that processor can write to it 

• directory tracks which processors share its memory blocks 

• vector of presence bits (1/processor) to indicate which 
processor(s) has cached the data 

• dirty bit to indicate if exclusive 
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Directory Implementation 

Different nodes have different uses when maintaining coherency 

• home node: where the memory location of an address resides (and 
cached data may be there too) 

• local node: where the memory request initiated 

• remote node: an alternate location for the data, if the processor 
has previously requested & cached it 

 

In satisfying a memory request: 

• messages sent between the different nodes in point-to-point 
communication 

• home node identified by the data memory address 

• messages get explicit replies 

 

Some simplifying assumptions for using the protocol 

• processor blocks until the access is complete 

• messages processed in the order received 

 

Spring 2011 18 CSE 471 - Cache Coherence 



10 

Read Miss for an Uncached Block 
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Read Miss for an Exclusive, Remote Block 
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3: data write-back 
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Write Miss for an Exclusive, Remote Block 
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Directory Protocol Messages 

Message type Source Destination Message Content
  

Read miss Local cache Home directory  P, A 

– Processor P reads data at address A;  
make P a read sharer and arrange to send data back  

Write miss  Local cache   Home directory   P, A 

– Processor P writes data at address A;  
make P the exclusive owner and arrange to send data back  

Invalidate Home directory   Remote caches  A 

– Invalidate a shared copy at address A. 

Fetch  Home directory   Remote cache   A 

– Fetch the block at address A and send it to its home directory 

Fetch/Invalidate  Home directory   Remote cache   A 

– Fetch the block at address A and send it to its home directory; invalidate the block in 
the cache 

Data value reply  Home directory   Local cache   Data 

– Return a data value from the home memory (read or write miss response) 

Data write-back Remote cache   Home directory   A, Data 

– Write-back a data value for address A (invalidate response) 
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Evaluating the Performance of Directory Schemes 

Greater bandwidth capability 

• multiple paths 

• not contacting processors not involved in the memory operation 

Longer operation latency 

• extra hops 

• acking 

• subtle correctness issues because multipath network is unordered 
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Directory FSM for a Memory Block 

Tracks all copies of a memory block 

Makes two state changes: 

• update coherency state (same as for snooping protocol) 

• alter the number of sharers in the sharing set 
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Directory FSM for a Memory Block (Home) 

(Data write-back) 

Sharers = {} 

Uncached 
Shared 

(read only) 

Read miss 

Send data reply 

Sharers = {P}, W = 0 

Write miss 

Send invalidate to all 

sharers 

Sharers = {P}, W = 1 

Write miss 

Send data reply 

Sharers = {P}, W = 1  

Read miss  

Send data reply 

Sharers += {P}, W = 0 
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Write miss 

Send fetch/invalidate to 

owner 

(Data write-back)  

Send data reply 

Sharers = {P}, W = 1 

Read miss 

Send data fetch to owner 

(Data write-back) 

Send data reply 

Sharers += {P}, W = 0 

Exclusive 

(read/write) 

CPU FSM for a Cache Block 

Same coherency states as for the directory FSM 

Transactions very similar to snooping implementations 

• read & write misses sent to home directory 

• invalidate & data fetch requests to the node with the data replace 

broadcasted read/write misses 
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CPU FSM for a Cache Block 

Fetch/Invalidate 

Invalidate 
Invalid 

Shared 

(read/only) 

Exclusive 

(read/write) 

CPU read miss 

CPU read hit 

CPU write 

miss 

 
CPU write hit or miss 

CPU write hit 

CPU read hit 

CPU read miss 

CPU write miss 

CPU read hit 

Fetch  
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Read miss  

Coherence on High-end Machines 

 

How cache coherency is handled 

• * hardware directories that record cache block state (most others) 

• no caches (early Cray MTA) 

• disallow caching of shared data (Cray 3TD) 

• software (compiler-based) coherence (research machines) 
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False Sharing 

 
Processors read & write to different words in a shared cache block 

• cache coherency is maintained on a cache block basis 

• processes share cache blocks, not data  

• block ownership bounces between processor caches 
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A Low-end MP 
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False Sharing 

Impact aggravated by: 

• larger block size: why? 

• larger cache size: why? 

• large miss penalties: why? 

 

Reduced by: 

• coherency protocols (coherency state per subblock) 

• let cache blocks become incoherent as long as there is only 
false sharing 

• make them coherent if any processor true shares 

• compiler optimizations (group & transpose, cache block padding) 

• cache-conscious programming wrt initial data structure layout 
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Important Issues 

Cache coherency: 

• its definition 

• the hardware support 

• write-invalidate protocols 

• how bus-based protocols work 

• how directories work 

• how coherency protocols match or take advantage of the MP 
design 

 

Adding to our knowledge: 

• a 4th type of miss (coherency misses) 

• a 3rd locality (processor) 

• a 2nd application of snooping (bus-based coherency protocol) 

• a 2nd use of sub-block placement 

• a 2nd latency vs. throughput trade-off 
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Important Issues 

Anything in red or green: 

• 2 bus protocols 

• inclusion property 

• UMA vs. NUMA 

• role of local, home, remote nodes 

• bus vs. multipath 

• snooping vs. directory 

• snooping in a coherency protocol vs. snooping in Tomasulo’s 
algorithm 

• false sharing: why it occurs, what makes it worse, how to fix 
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Apply What You Know 

A different 4th state: 

• what triggers state transitions 

• what are the state changes, given a sequence of memory 
operations 

 

A protocol that isn’t based on invalidations: 

• what triggers state transitions 

• what are the state changes, given a sequence of memory 
operations 
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Apply What You Know 

Example: 
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Assume you have a 4-state, write-invalidate protocol, in which three of the states 

are those used in the baseline 3-state protocol we studied in class and the fourth 

state is a new one, called private clean.  A private clean state means that there is 

only one cached copy of the data,  and that it is a read-only copy (i.e., it has the 

same value as its backup in memory).   Using this new 4-state coherency protocol, 

fill  in the state values for a single cache block in each of the processors (P0, P1, 

P2), for each of the memory operations listed in the first column.  For this question, 

you can assume the multiprocessor is bus-based. 

Operations P0 P1 P2 

Initially invalid invalid invalid 

P1: loads B       

P2: loads B       

P0: stores B       

P1: loads B       

P1: stores B       


