Dvnamic Scheduling

Why go out of style?
» expensive hardware for the time (actually, still is, relatively)
* register files grew so less register pressure
» early RISCs had lower CPlIs

Spring 2008 CSE 471 - R10000 Register
Renaming

Dvnamic Scheduling

Why come back?
» higher chip densities
» greater need to hide latencies as:
 discrepancy between CPU & memory speeds increases
* branch misprediction penalty increases from superpipelining

« dynamic scheduling was generalized to cover more than floating
point operations

» handles branches & hides branch latencies
* hides cache misses

 can be implemented with a more general register renaming
mechanism

e commits instructions in-order to preserve precise interrupts
e processors now issue multiple instructions at the same time
* more need to exploit ILP

2 styles: large physical register file & reorder buffer
(R10000-style) (PentiumPro-style)

Spring 2008 CSE 471 - R10000 Register
Renaming

Precise Interrupts

preserve the model that instructions execute in program-
generated order, one at a time

» If a recoverable interrupt occurs, the processor can recover from it

What happens on a precise interrupt:

» disable writes for faulting & subsequent instructions
» force trap instruction into pipeline
« trap routine

» save the state of the executing program

» correct the cause of the interrupt

* restore program state

Spring 2008 CSE 471 - R10000 Register
Renaming

Reqgister Renaming with A Physical Reqgister File

Register renaming provides a mapping between 2 register sets
e architectural registers defined by the ISA
 physical registers implemented in the CPU
 hold results of the instructions committed so far

* hold results of subsequent instructions that have not yet
committed

« more of them than architectural registers

e ~issue width * # pipeline stages between register
renaming & commit

Spring 2008 CSE 471 - R10000 Register
Renaming

Reqgister Renaming with A Physical Reqgister File

How does it work?:

* an architectural register is mapped to a physical register during a
register renaming stage in the pipeline

» destination registers create mappings
* source registers use mappings
» operands thereafter are called by their physical register number

* hazards determined by comparing physical register numbers,
not architectural register numbers

Spring 2008 CSE 471 - R10000 Register
Renaming

A Register Renaming Example

Code Segment

Register Mapping

Comments

1d r7,0(r6)

add r8, r9, r7

sub r7, r2, r3

Spring 2008

r7 -> pl
r8 -> p2
r7 -> p3

CSE 471 - R10000 Register
Renaming

plis allocated

use pl, notr7/

p3is allocated
plis deallocated
when sub commits

Reqgister Renaming with A Physical Reqgister File

Effects:
« eliminates WAW and WAR hazards (false name dependences)
e increases ILP

Spring 2008 CSE 471 - R10000 Register
Renaming

An Implementation (R10000)

Modular design with regular hardware data structures

Structures for register renaming
64 physical registers (each, for integer & FP)

 map tables for the current architectural-to-physical register
mapping (separate, for integer & FP)

» accessed with an architectural register number
» produces a physical register number

« source operands refer to the latest defined destination register, i.e.,
the current mappings

» a destination register is assigned a new physical register number
from a free reqister list (separate, for integer & FP)

Spring 2008 CSE 471 - R10000 Register
Renaming

An Implementation (R10000)

Instruction “queues” (integer, FP & data transfer)
» contains decoded & mapped instructions with the current
physical register mappings
 instructions entered into free locations in the 1Q
« sit there until they are dispatched to functional units

« somewhat analogous to Tomasulo reservation stations
without value fields or valid bits

» used to determine when operands are available

» compare each source operand of instructions in the 1Q
to destination values just computed

» determines when an appropriate functional unit is available
 dispatches instructions to functional units

Spring 2008 CSE 471 - R10000 Register
Renaming

An Implementation (R10000)

active list for all uncommitted instructions

the mechanism for maintaining precise interrupts
* instructions entered in program-generated order
 allows instructions to complete in program-generated order
instructions removed from the active list when:
e an instruction commits:
 the instruction has completed execution
« all instructions ahead of it have also completed
* branch is mispredicted
* an exception occurs
contains the previous architectural-to-physical destination register
mapping
» used to recreate the map table for instruction restart after an
exception

instructions in the other hardware structures & the functional units
are identified by their active list location

Spring 2008 CSE 471 - R10000 Register 10

Renaming

An Implementation (R10000)

busy-register table (integer & FP):
» indicates whether a physical register contains a value
« somewhat analogous to Tomasulo’s register status
» used to determine operand availability

* Dbit is set when a register is mapped & leaves the free list (not
available yet)

» cleared when a FU writes the register (now there’s a value)

Spring 2008 CSE 471 - R10000 Register 11
Renaming

Instruction Cache
32K, two-way associative

Predecode | .
Unit

FP Registers

Integer Registers
64 > 64 bits

Data Cache
32K, two-way associative

Main TLB
64 entries

64 =< 64 bits

=

System Interface

t addr/data)>

|

Avalanche Bus (64 b

<

Spring 2008 CSE 471 - R10000 Register
Renaming

[N
N

R10000 Die Photo

R10K die size 16.6mm x 17.9mm

Pia)

|
- §*

|—H~L‘>£T & H‘I@]Z :
—I—ﬁs{—
Tagcs

AL I 5 o

1ZJata
fags

it Address

Liist |
- Quene

AN N RN ESE 0T NEE]OBERDORRPEICER RIS

‘ C1rad ‘

Integer
Datapaihi.

Register

Rename Integer
' Quieue

il

=

KPP FP & |t
Datapa‘ h Queue~ cane B ';5|:

TR e il

! e 0 i

£
i
i
5
=
i=
-]
i=
[1=]
=
E.
i
@ |
E-.
il
3
T
]

BT -.rﬂ.u..r-. B e S B B B e BB B B m.l.mm:.m

Spring 2008 CSE 471 - R10000 Register
Renaming

The R10000 in Action 1

A3, #ireqg)

a4, A3, reg

A3, reg,

Ah, A3, reg

arch register
potential multi-cycle

arch register

req arch register A3 redefined

nhame dependence
arch register A3 used

map table

%) = N % =
B

31

/

-+ freelist

Instruction Queue

A%iue List

S1

Avail

Dest

AL tag Dest | Arch | Done bit

—l 1d
add
sub
o1
Ins

Spring 2008

CSE 471 - R10000 Register 14

Renaming

Spring 2008

The R10000 in Action 2

1d A3, #(req) arch register
potential multi-cycle
add a4, A3, reg
zub A3, reqg, reqg
or AL, A3, reg
map table
0
2 - freelist
3 |5
/31
Instruction Queue / Active List
Ins | S1 | Avail | Dest| AL tag Dest | Arch | Done bit
/,.-Px A3 | notdone

o

CSE 471 - R10000 Register

Renaming

15

Spring 2008

The R10000 in Action 3

1d A3, #(req) arch register
potential multi-cycle
add a4, A3, reg
zub A3, reqg, reqg
or AL, A3, reg
map table
0
2 - freelist
3 |5
/31
Instruction Queue / Active List
Ins | S1 | Avail | Dest| AL tag Dest | Arch | Done bit
/,.-Px A3 | notdone

o

CSE 471 - R10000 Register

Renaming

16

Spring 2008

The R10000 in Action 4

1d a3, #ireqg) arch register
potential multi-cycle
add ad, B3, reg arch register
=ub A3, reg, reg
or ah, A3, reg
map table
0
3 .
a2 [freelist
5 | Pz
31
A - -
Instruction Queue Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
+Px |A3 not done
Tt (=1 I':!. =, v = /1-' PY A‘q HDT ane
add P21 1 /

CSE 471 - R10000 Register
Renaming

17

Spring 2008

The R10000 in Action 5

1d 23, #(reg) arch register
potential multi-cycle
add ad, B3, reqg arch register
=ub A3, reg, reg arch register A3 redefined
nhame dependence
or Ah, A3, reg
map table
0
3122 |le— ! freelist
4 |21
5 |Pz
/31
Instruction Queue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
ST & < Px |A3 |notdone
T8 = Py |Ad4 |notdone
A3 | done
add 1 P21 1
CSE 471 - R10000 Register 18

Renaming

Spring 2008

The R10000 in Action 5: Interrupts 1

1d 23, #(reg) arch register
potential multi-cycle
add ad, B3, reqg arch register
=ub A3, reg, reg arch register A3 redefined
nhame dependence
or Ah, A3, reg
map table
0
3122 |le— ! freelist
4 |21
5 |Pz
/31
Instruction Queue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
ST & 2 Px |A3 |notdone
T8 = Py |Ad4 |notdone
A3 | done
add 1 P21 1
CSE 471 - R10000 Register 19

Renaming

Spring 2008

The R10000 in Action: Interrupts 2

1d 23, #(reg) arch register
potential multi-cycle
add ad, B3, reqg arch register
=ub A3, reg, reg arch register A3 redefined
nhame dependence
or AL, A3, reqg arch register A3 used
map table
0
3 - free list
4 (21
3 |Pz
’/31
Instruction Queue A%iue List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
k . «Px |A3 |notdone
Fert =1 i':l. S = = /1"PY A!"-'I- hot dﬂne
add 1 |P21 1 /

CSE 471 - R10000 Register

Renaming

20

Spring 2008

The R10000 in Action: Interrupts 3

1d 23, #ireqg) arch register
potential multi-cycle
add ad, A3, reqg arch register
=ub A3, reg, reg arch register A3 redefined
name dependence
or A5, A3, reg arch register A3 used
map table
0
3 - free list
4 | py
> |Pz
/
Instruction Queue A%ﬂiue List
Ins | S1 | Avail | Dest| AL tag Dest | Arch | Done bit
-_/..-Px A3 |notdone
CSE 471 - R10000 Register 21

Renaming

ﬁ

Spring 2008

The R10000 in Action: Interrupts 4

1d 23, #(reg) arch register
potential multi-cycle
add ad, B3, reqg arch register
=ub A3, reg, reg arch register A3 redefined
nhame dependence
or AL, A3, reqg arch register A3 used
map table
0
3 [Px | | freelist
4 [Py
5 |Pz
/
Instruction Queue A%iue List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit

CSE 471 - R10000 Register

Renaming

22

R10000 Execution

In-order issue (have already fetched instructions)
* rename architectural registers to physical registers via a map table

» detect structural hazards for instruction queues (integer, memory &
FP) & active list

e issue up to 4 instructions to the instruction queues
Out-of-order execution (to increase ILP)

* reservation-station-like instruction queues that indicate when an
operand has been calculated

« each instruction monitors the setting of the busy-register table
» set busy-register table entry for the destination register
» detect functional unit structural & RAW hazards
« dispatch instructions to functional units
In-order commit (to preserve precise interrupts)
» this & previous program-generated instructions have completed
* physical register in previous mapping returned to free list
* rollback on interrupts

Spring 2008 CSE 471 - R10000 Register 23
Renaming

	Dynamic Scheduling
	Dynamic Scheduling
	Precise Interrupts
	Register Renaming with A Physical Register File
	Register Renaming with A Physical Register File
	A Register Renaming Example
	Register Renaming with A Physical Register File
	An Implementation (R10000)
	An Implementation (R10000)
	An Implementation (R10000)
	An Implementation (R10000)
	
	R10000 Die Photo
	The R10000 in Action 1
	The R10000 in Action 2
	The R10000 in Action 3
	The R10000 in Action 4
	The R10000 in Action 5
	The R10000 in Action 5 : Interrupts 1
	The R10000 in Action: Interrupts 2
	The R10000 in Action: Interrupts 3
	The R10000 in Action: Interrupts 4
	R10000 Execution

