
Motivation for Multithreaded Architectures

Processors not executing code at their hardware potential
• late 70’s: performance lost to memory latency
• 90’s: performance not in line with the increasingly complex parallel

hardware as well
• increase in instruction issue bandwidth
• increase in number of functional units
• out-of-order execution
• techniques for decreasing/hiding branch & memory latencies
• Still, processor utilization was decreasing & instruction

throughput not increasing in proportion to the issue width

Spring 2008 CSE 471 - Multithreading 1

Spring 2008 CSE 471 - Multithreading 2

Motivation for Multithreaded Architectures

Motivation for Multithreaded Architectures

Major cause is the lack of instruction-level parallelism in a single executing
thread

Therefore the solution has to be more general than building a smarter
cache or a more accurate branch predictor

Spring 2008 CSE 471 - Multithreading 3

Multithreaded Processors

Multithreaded processors can increase the pool of independent
instructions & consequently address multiple causes of processor
stalling
• holds processor state for more than one thread of execution

• registers
• PC
• each thread’s state is a hardware context

• execute the instruction stream from multiple threads without
software context switching

• utilize thread-level parallelism (TLP) to compensate for a lack in ILP

Spring 2008 CSE 471 - Multithreading 4

Multithreading

Traditional multithreaded processors hardware switch to a different context
to avoid processor stalls

Two styles of traditional multithreading
1. coarse-grain multithreading

• switch on a long-latency operation (e.g., L2 cache miss)
• another thread executes while the miss is handled
• modest increase in instruction throughput

• doesn’t hide latency of short-latency operations
• no switch if no long-latency operations
• need to fill the pipeline on a switch

• potentially no slowdown to the thread with the miss
• if stall is long & switch back fairly promptly

• HEP, IBM RS64 III

Spring 2008 CSE 471 - Multithreading 5

Traditional Multithreading

Two styles of traditional multithreading
2. fine-grain multithreading

• can switch to a different thread each cycle (usually round robin)
• hides latencies of all kinds
• larger increase in instruction throughput but slows down the

execution of each thread
• Cray (Tera) MTA

Spring 2008 CSE 471 - Multithreading 6

Comparison of Issue Capabilities

Spring 2008 CSE 471 - Multithreading 7

Simultaneous Multithreading (SMT)

Third style of multithreading, different concept
3. simultaneous multithreading (SMT)

• issues multiple instructions from multiple threads each cycle
• no hardware context switching
• same-cycle multithreading
• huge boost in instruction throughput with less degradation to

individual threads

Spring 2008 CSE 471 - Multithreading 8

Comparison of Issue Capabilities

Spring 2008 CSE 471 - Multithreading 9

Cray (Tera) MTA

Goals
• the appearance of uniform memory access
• lightweight synchronization
• heterogeneous parallelism

Spring 2008 CSE 471 - Multithreading 10

Cray (Tera) MTA

Fine-grain multithreaded processor
• can switch to a different thread each cycle

• switches to ready threads only
• up to 128 hardware contexts

• lots of latency to hide, mostly from the multi-hop interconnection
network

• average instruction latency for computation: 22 cycles
(i.e., 22 instruction streams needed to keep functional units
busy)

• average instruction latency including memory: 120 to 200-
cycles
(i.e., 120 to 200 instruction streams needed to hide all latency,
on average)

• processor state for all 128 contexts
• GPRs (total of 4K registers!)
• status registers (includes the PC)
• branch target registers/stream

Spring 2008 CSE 471 - Multithreading 11

Cray (Tera) MTA

Interesting features
• No processor-side data caches

• increases the latency for data accesses but reduces the
variation between ops

• to avoid having to keep caches coherent
• memory-side buffers instead

• L1 & L2 instruction caches
• instruction accesses are more predictable & have no coherency

problem
• prefetch fall-through & target code

Spring 2008 CSE 471 - Multithreading 12

Cray (Tera) MTA

Interesting features
• Trade-off between avoiding memory bank conflicts &

exploiting spatial locality for data

• conflicts:
• memory distributed among hardware contexts
• memory addresses are randomized to avoid conflicts

• want to fully utilize all memory bandwidth
• locality:

• run-time system can confine consecutive virtual addresses to a
single (close-by) memory unit

• used mainly for the stack

Spring 2008 CSE 471 - Multithreading 13

Cray (Tera) MTA

Spring 2008 CSE 471 - Multithreading 14

Interesting features
• tagged memory

• indirectly set full/empty bits to prevent data races
• prevents a consumer/producer from loading/overwriting a

value before a producer/consumer has written/read it
• example for the consumer:

• set to empty when producer instruction starts
executing

• consumer instructions block if try to read the producer
value

• set to full when producer writes value
• consumers can now read a valid value

• explicitly set full/empty bits for thread synchronization
• primarily used accessing shared data

• lock: read memory location & set to empty
• other readers are blocked
• unlock: write & set to full

Cray (Tera) MTA

Interesting features
• no paging

• want pages pinned down in memory for consistent latency
• page size is 256MB

• forward bit
• memory contents interpreted as a pointer & dereferenced
• used for GC & null reference checking

Spring 2008 CSE 471 - Multithreading 15

Cray (Tera) MTA

Compiler support
• VLIW instructions

• memory/arithmetic/branch
• load/store architecture
• need a good code scheduler

• memory dependence look-ahead
• field in a memory instruction that specifies the number of

independent memory ops that follow
• guarantees an instruction choice that has no stalling
• improves memory parallelism

• handling branches
• special instruction to store a branch target in a register before

the branch is executed
• can start prefetching the target code

Spring 2008 CSE 471 - Multithreading 16

SMT: The Executive Summary

Simultaneous multithreaded (SMT) processors combine designs from:
• out-of-order superscalar processors
• traditional multithreaded processors

The combination enables a processor
• that issues & executes instructions from multiple threads

simultaneously
=> converting TLP to ILP

• in which threads share almost all hardware resources

Spring 2008 CSE 471 - Multithreading 17

Performance Implications

Multiprogramming workload
• 2.5X on SPEC95, 4X on SPEC2000

Parallel programs
• ~1.7X on SPLASH2

Commercial databases
• 2-3X on TPC B; 1.5X on TPC D

Web servers & OS
• 4X on Apache and Unix

Spring 2008 CSE 471 - Multithreading 18

Does this Processor Sound Familiar?

Technology transfer =>
• 2-context Intel Hyperthreading
• 4-context IBM Power5 & Power6
• 2-context Sun UltraSPARC on a 4-processor CMP
• 4-context Compaq 21464
• network processor & mobile device start-ups

Spring 2008 CSE 471 - Multithreading 19

An SMT Architecture

Three primary goals for this architecture:
1. Achieve significant throughput gains with multiple threads
2. Minimize the performance impact on a single thread executing

alone
3. Minimize the microarchitectural impact on a conventional out-of-

order superscalar design

Spring 2008 CSE 471 - Multithreading 20

Implementing SMT

Spring 2008 CSE 471 - Multithreading 21

Implementing SMT

No special hardware for scheduling instructions from multiple
threads
• use the out-of-order renaming & instruction scheduling mechanisms

as a superscalar
• physical register pool model
• renaming hardware eliminates false dependences both within a

thread (just like a superscalar) & between threads

How it works:
• map thread-specific architectural registers onto a pool of thread-

independent physical registers
• operands are thereafter called by their physical names
• an instruction is issued when its operands become available & a

functional unit is free
• instruction scheduler not consider thread IDs when dispatching

instructions to functional units
(unless threads have different priorities)

Spring 2008 CSE 471 - Multithreading 22

From Superscalar to SMT

Extra pipeline stages for accessing thread-shared register files
• 8 threads * 32 registers + renaming registers

SMT instruction fetcher (ICOUNT)
• fetch from 2 threads each cycle

• count the number of instructions for each thread in the pre-
execution stages

• pick the 2 threads with the lowest number
• in essence fetching from the two highest throughput threads

Spring 2008 CSE 471 - Multithreading 23

From Superscalar to SMT

Per-thread hardware
• small stuff
• all part of current out-of-order processors
• none endangered the cycle time

• other per-thread processor state, e.g.,
• program counters
• return stacks
• thread identifiers, e.g., with BTB entries, TLB entries

• per-thread bookkeeping for, e.g.,
• instruction queue flush
• instruction retirement
• trapping

This is why there is only a 15% increase to Alpha 21464 chip area.

Spring 2008 CSE 471 - Multithreading 24

Implementing SMT

Thread-shared hardware:
• fetch buffers
• branch prediction structures
• instruction queues
• functional units
• active list
• all caches & TLBs
• store buffers & MSHRs

Another reason why there is little single-thread performance degradation
(~1.5%).

Spring 2008 CSE 471 - Multithreading 25

Architecture Research

Concept & potential of Simultaneous Multithreading

Designing the microarchitecture
• straightforward extension of out-of-order superscalars

I-fetch thread chooser
• 40% faster than round-robin

The lockbox for cheap synchronization

• orders of magnitude faster

• can parallelize previously unparallelizable codes

Spring 2008 CSE 471 - Multithreading 26

Architecture Research

Software-directed register deallocation
• large register-file performance w. small register file

Mini-threads
• large SMT performance w. small SMTs

SMT instruction speculation
• don’t execute as far down a wrong path

• speculative instructions don’t get as far down the pipeline

• speculation keeps a good thread mix in the IQ

• most important factor for performance

Spring 2008 CSE 471 - Multithreading 27

Compiler Research

Tuning compiler optimizations for SMT

• data decomposition: use cyclic iteration scheduling

• tiling: use cyclic tiling; no tile size sweet spot

Communicate last-use information to HW for early register deallocation

• now need fewer renaming registers

Compiling for fewer registers/thread
• surprisingly little additional spill code (avg. 3%)

Spring 2008 CSE 471 - Multithreading 28

Others are Now Carrying the Ball

Fault detection & recovery
Thread-level speculation
Instruction prefetching
Data prefetching
Single-thread execution
Profiling executing threads
Instruction issue hardware design
Thread scheduling & thread priority
SMT-CMP hybrids
Power considerations

Spring 2008 CSE 471 - Multithreading 29

SMT Collaborators

UW
Hank Levy
Steve Gribble

Dean Tullsen (UC San Diego)
Jack Lo (VMWare)
Sujay Parekh (IBM Yorktown)
Brian Dewey (Microsoft)
Manu Thambi (Microsoft)
Josh Redstone (Google)
Mike Swift (U. Wisconsin)
Luke McDowell (Naval Academy)
Steve Swanson (UC San Diego)
Aaron Eakin (HP)
Dimitriy Portnov (Google)

DEC/Compaq

Joel Emer (now Intel)
Rebecca Stamm
Luiz Barroso (now Google)
Kourosh Gharachorloo (now Google)

For more info on SMT:
http://www.cs.washington.edu/research/smt

Spring 2008 CSE 471 - Multithreading 30

	Motivation for Multithreaded Architectures
	Motivation for Multithreaded Architectures
	Motivation for Multithreaded Architectures
	Multithreaded Processors
	Multithreading
	Traditional Multithreading
	Comparison of Issue Capabilities
	Simultaneous Multithreading (SMT)
	Comparison of Issue Capabilities
	Cray (Tera) MTA
	Cray (Tera) MTA
	Cray (Tera) MTA
	Cray (Tera) MTA
	Cray (Tera) MTA
	Cray (Tera) MTA
	Cray (Tera) MTA
	SMT: The Executive Summary
	Performance Implications
	Does this Processor Sound Familiar?
	An SMT Architecture
	Implementing SMT
	Implementing SMT
	From Superscalar to SMT
	From Superscalar to SMT
	Implementing SMT
	Architecture Research
	Architecture Research
	Compiler Research
	Others are Now Carrying the Ball
	SMT Collaborators

