Issues in Multiprocessors

Which programming model for interprocessor communication
» shared memory
» reqgular loads & stores

« SPARCCenter, SGI Challenge, Cray T3D, Convex Exemplar,
KSR-1&2, today’'s CMPs

e Mmessage passing
« explicit sends & receives
« TMC CM-5, Intel Paragon, IBM SP-2

Which execution model
» control parallel
« identify & synchronize different asynchronous threads
o data parallel
e same operation on different parts of the shared data space

Spring 2008 CSE 471 - Multiprocessors

Issues In Multiprocessors

How to express parallelism
« language support
« HPF, ZPL
e runtime library constructs
» coarse-grain, explicitly parallel C programs
e automatic (compiler) detection

« implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS
compilers

Application development
« embarrassingly parallel programs could be easily parallelized
» development of different algorithms for same problem

Spring 2008 CSE 471 - Multiprocessors

Issues In Multiprocessors

How to get good parallel performance
* recognize parallelism

» transform programs to increase parallelism without decreasing
processor locality

» decrease sharing costs

Spring 2008 CSE 471 - Multiprocessors

Flynn Classification

SISD: single instruction stream, single data stream
* single-context uniprocessors

SIMD: single instruction stream, multiple data streams
» exploits data parallelism
» example: Thinking Machines CM

MISD: multiple instruction streams, single data stream
» systolic arrays
o example: Intel iWarp, today’s streaming processors

MIMD: multiple instruction streams, multiple data streams
* multiprocessors
* multithreaded processors
« parallel programming & multiprogramming

» relies on control parallelism: execute & synchronize different
asynchronous threads of control

o example: most processor companies have CMP configurations
Spring 2008 CSE 471 - Multiprocessors

Nexus

Frontend 0
(DEC VAX or

Symbolics)

Connection Machine \k

V

Bus imterface

Front end 1
(DEC vAX Or

Symbolics)

Bus interface

Parallel Processor Unit
Connection Machine Connection Machine
16,384 processors " 16 384 Drocessors
- -
S aguancer Faquam:ur
Q 3
Sequancer ISequancer
1 2 -

Connection Machine
16.384 procassors

Connection Machine
16,384 processors

Front end 2
{DEC vAX Or

Symbalics)

Bus imerface

Front end 3
(DEC VAX OF

Symbolics)

Bus imerface

1 1 | I
Connection Machine YO System
|] L [
Data Data Data Graphic
Vault Vault Vauh Display

MNetwork

CSE 471 - Multiprocessors

Figure 1. Connection Machine system organization.

Spring 2008

Systolic Array

' WAS AUy -
ab | L QT + oy rlo= Gu{sﬁu
c_d:* X & ~ CoCuaT A dag ﬁ_-{—.da W
ol z -
w * 'i

x
b : L
R .. [‘!‘_) O —’ﬁ)_l

__‘ ~ lOP“ S dl <P
bz 3

.*-—
b , Eﬁﬂ\\m&. =0
ol s

Spring 2008 CSE 471 - Multiprocessors

MIMD

Low-end
* bus-based
« simple, but a bottleneck
» simple cache coherency protocol
» physically centralized memory
* uniform memory access (UMA machine)

* Sequent Symmetry, SPARCCenter, Alpha-, PowerPC- or SPARC-
based servers, most of today’s CMPs

Spring 2008 CSE 471 - Multiprocessors

L ow-end MP

Processor Processor Processor Processor
One or One or One or One or
more levels more levels more levels more levels
of cache of cache of cache of cache

I/0O System

Main memory

Spring 2008

CSE 471 - Multiprocessors

MIMD

High-end

* higher bandwidth, multiple-path interconnect
e more scalable
* more complex cache coherency protocol (if shared memory)
 longer latencies

» physically distributed memory

* non-uniform memory access (NUMA machine)

» could have processor clusters

» SGI Challenge, Convex Examplar, Cray T3D, IBM SP-2, Intel
Paragon, Sun T1

Spring 2008 CSE 471 - Multiprocessors

Processor
+ cache

Memaory

Me mory

High-end MP

Memory

Me mory

Memory

Spring 2008

Memory

Memory

CSE 471 - Multiprocessors

[/0

Memor

Processo
+ cache

S

10

Comparison of Issue Capabilities

Single-chip

Superscalar I Multiprocessor

horizontal waste

Issne slots) Issuelsluts
I EEEE
L] NN

g
3
= HEL]L HEEEN
g ([] Ny 1IN
§‘|||||||| LI L]
c HEHRNR] (.
l N ..:..
N
HiInN HE]
/ B Thread1 B Thread 4
B Thread?2

vertical waste

Spring 2008 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model
» global shared address space
* not worry about data locality but
get better performance when program for data placement
lower latency when data is local

* but can do data placement if it is crucial, but don’t
have to

* hardware maintains data coherence
* synchronize to order processor’s accesses to shared data

* like uniprocessor code so parallelizing by programmer or
compiler is easier

= can focus on program semantics, not interprocessor
communication

Spring 2008 CSE 471 - Multiprocessors 12

Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software) but
overlap of communication & computation

latency-hiding techniques can be applied to message passing
machines

+ higher bandwidth for small transfers but
usually the only choice

Spring 2008 CSE 471 - Multiprocessors

13

Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

more complex programming model

additional language constructs

need to program for nearest neighbor communication
+ no coherency hardware
+ good throughput on large transfers but

what about small transfers?

+ more scalable (memory latency doesn’t scale with the number of
processors) but

large-scale SM has distributed memory also

* hah! so you're going to adopt the message-passing
model?

Spring 2008 CSE 471 - Multiprocessors 14

Shared Memory vs. Message Passing

Why there was a debate
 little experimental data
e not separate implementation from programming model
« can emulate one paradigm with the other

« MP on SM machine
message buffers in local (to each processor) memory
copy messages by ld/st between buffers

« SM on MP machine
|d/st becomes a message copy
sloooo0o000000W

Who won?

Spring 2008 CSE 471 - Multiprocessors

15

	Issues in Multiprocessors
	Issues in Multiprocessors
	Issues in Multiprocessors
	Flynn Classification
	CM-1
	Systolic Array
	MIMD
	Low-end MP
	MIMD
	High-end MP
	Comparison of Issue Capabilities
	Shared Memory vs. Message Passing
	Shared Memory vs. Message Passing
	Shared Memory vs. Message Passing
	Shared Memory vs. Message Passing

