
Von Neumann Execution Model

Fetch:
• send PC to memory
• transfer instruction from memory to CPU
• increment PC

Decode & read ALU input sources

Execute
• an ALU operation
• memory operation
• branch target calculation

Store the result in a register or memory

Spring 2008 CSE 471 - Dataflow Machines 1

Von Neumann Execution Model

Program is a linear series of addressable instructions
• next instruction to be executed is pointed to by the PC
• send PC to memory
• next instruction to execute depends on what happened during the

execution of the current instruction

Instruction operands reside in a centralized, global processor memory
(GPRs)

Spring 2008 CSE 471 - Dataflow Machines 2

Dataflow Execution Model

Instructions are already in the processor:

Operands arrive from a producer instruction via a network

Check to see if all an instruction’s operands are there

Execute
• an ALU operation
• memory operation
• branch target calculation

Send the result
• to the consumer instructions or memory

Spring 2008 CSE 471 - Dataflow Machines 3

Dataflow Execution Model

Execution is driven by the availability of input operands
• operands are consumed
• output is generated
• no PC

Result operands are passed directly to consumer instructions
• no register file

Spring 2008 CSE 471 - Dataflow Machines 4

Dataflow Computers

Motivation:
• exploit instruction-level parallelism on a massive scale
• more fully utilize all processing elements

Believed this was possible if:
• expose instruction-level parallelism by using a functional-style

programming language
• no side effects; only restrictions were producer-consumer

• scheduled code for execution on the hardware greedily
• hardware support for data-driven execution

Spring 2008 CSE 471 - Dataflow Machines 5

Dataflow Execution

All computation is data-driven.
• binary is represented as a directed graph

• nodes are operations
• values travel on arcs

• WaveScalar instruction

+

b

a+b

a

opcode destination1 destination2

Spring 2008 CSE 471 - Dataflow Machines 6

Dataflow Execution

Data-dependent operations are connected, producer to consumer
Code & initial values loaded into memory
Execute according to the dataflow firing rule

• when operands of an instruction have arrived on all input arcs,
instruction may execute

• value on input arcs is removed
• computed value placed on output arc

+

Spring 2008 CSE 471 - Dataflow Machines 7

Dataflow Example

*

Load

Store

+

j i

*

b

A

+

+

A[j + i*i] = i;

b = A[i*j];

Spring 2008 CSE 471 - Dataflow Machines 8

Dataflow Example

*

Load

Store

+

j i

*

b

A

+

+

A[j + i*i] = i;

b = A[i*j];

Spring 2008 CSE 471 - Dataflow Machines 9

Dataflow Example

*

Load

Store

+

j i

*

b

A

+

+

A[j + i*i] = i;

b = A[i*j];

Spring 2008 CSE 471 - Dataflow Machines 10

Dataflow Execution

Control
• steer (ρ) merge (φ)

• convert control dependence to data dependence with value-
steering instructions

• execute one path after condition variable is known (steer)
or

• execute both paths & pass values at end (merge)

+ predicate

T path F path

value

+ predicate

T path value F path value

value

Spring 2008 CSE 471 - Dataflow Machines 11

WaveScalar Control

ρ (steer) φ (merge)

Spring 2008 CSE 471 - Dataflow Machines 12

Dataflow Computer ISA

Instructions
• operation
• names of destination instructions

Data packets, called Tokens
• value
• tag to identify the operand instance & match it with its fellow

operands in the same dynamic instruction instance
• architecture dependent

– instruction number
– iteration number
– activation/context number (for functions, especially

recursive)
– thread number

• Dataflow computer executes a program by receiving, matching &
sending out tokens.

Spring 2008 CSE 471 - Dataflow Machines 13

Types of Dataflow Computers

static:
• one copy of each instruction
• no simultaneously active iterations, no recursion

•

Spring 2008 CSE 471 - Dataflow Machines 14

Types of Dataflow Computers

dynamic
• multiple copies of each instruction
• better performance
• gate counting technique to prevent instruction explosion

k-bounding
• extra instruction with K tokens on its input arc; passes a token

to 1st instruction of loop body
• 1st instruction of loop body consumes a token (needs one extra

operand to execute)
• last instruction in loop body produces another token at end of

iteration
• limits active iterations to k

•

Spring 2008 CSE 471 - Dataflow Machines 15

Prototypical Early Dataflow Computer

Original implementations were centralized.

Performance cost
• large token store (long access)
• long wires
• arbitration both for PEs and storing of result

data
packets

processing
elements

token
store instructions

instruction
packets

Spring 2008 CSE 471 - Dataflow Machines 16

Problems with Dataflow Computers

Language compatibility
• dataflow cannot guarantee a correct ordering of memory operations
• dataflow computer programmers could not use mainstream

programming languages, such as C
• developed special languages in which order didn’t matter

Scalability: large token store
• side-effect-free programming language with no mutable data

structures
• each update creates a new data structure
• 1000 tokens for 1000 data items even if the same value

• aggravated by the state of processor technology at the time
• delays in processing (only so many functional units, arbitration

delays, etc.) meant delays in operand arrival
• associative search impossible; accessed with slower hash

function

Spring 2008 CSE 471 - Dataflow Machines 17

Dataflow Example

*

Load

Store

+

j i

*

b

A

+

+

A[j + i*i] = i;

b = A[i*j];

Spring 2008 CSE 471 - Dataflow Machines 18

Example to Illustrate the Memory Ordering Problem

*

Load

Store

+

j i

*

b

A

+

+

A[j + i*i] = i;

b = A[i*j];

Spring 2008 CSE 471 - Dataflow Machines 19

Example to Illustrate the Memory Ordering Problem

*

Load

Store

+

j i

*

b

A

+

+

A[j + i*i] = i;

b = A[i*j];

Spring 2008 CSE 471 - Dataflow Machines 20

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

Load-store ordering issue

*

Load

Store

+

j i

*

b

A

+

+

Spring 2008 CSE 471 - Dataflow Machines 21

Partial Solutions

Solutions led away from pure dataflow execution

Data representation in memory
• I-structures:

• write once; read many times
• early reads are deferred until the write

• M-structures:
• multiple reads & writes, but they must alternate
• reusable structures which could hold multiple values

Spring 2008 CSE 471 - Dataflow Machines 22

Partial Solutions

Local (register) storage for back-to-back instructions

Frames for distinct sequential instruction execution
• create “frames”, each of which stored the data for one iteration or

one thread
• not have to search entire token store (offset to frame)
• like having dataflow execution among coarse-grain threads rather

than instructions

Physically partition token store & place each partition with a PE

Spring 2008 CSE 471 - Dataflow Machines 23

	Von Neumann Execution Model
	Von Neumann Execution Model
	Dataflow Execution Model
	Dataflow Execution Model
	Dataflow Computers
	Dataflow Execution
	Dataflow Execution
	Dataflow Example
	Dataflow Example
	Dataflow Example
	Dataflow Execution
	WaveScalar Control
	Dataflow Computer ISA
	Types of Dataflow Computers
	Types of Dataflow Computers
	Prototypical Early Dataflow Computer
	Problems with Dataflow Computers
	Dataflow Example
	Example to Illustrate the Memory Ordering Problem
	Example to Illustrate the Memory Ordering Problem
	Example to Illustrate the Memory Ordering Problem
	Partial Solutions
	Partial Solutions

