
Reg. ren & Mult. Issue CSE 471 1

Reorder Buffer: register renaming and in-
order completion

• Use of a reorder buffer 
– Reorder buffer = circular queue with head and tail pointers

• At issue (renaming time), an instruction is assigned an entry at the tail 
of the reorder buffer (ROB) which becomes  the name of (or a pointer 
to) the result register. 
– Recall that instructions are issued in program order, thus the ROB stores 

instructions in program order

• At end of functional-unit computation, value is put in the instruction 
reorder buffer’s position

• When the instruction reaches the head of the buffer, its value is stored 
in the logical or physical (other reorder buffer entry) register.

• Need of a mapping table between logical registers and ROB entries



Reg. ren & Mult. Issue CSE 471 2

Example

Before: add r3,r3,4                    after         add rob6,r3,4                        

add r4,r7,r3                                   add rob7,r7,rob6

add r3, r2, r7                                 add rob8,r2,r7

Assume reorder buffer is initially at position 6 and has more 
than 8 slots

The mapping table indicates the correspondence between 
ROB entries and logical registers



Reg. ren & Mult. Issue CSE 471 3

Data dependencies with register renaming

• Register renaming does not get rid of RAW dependencies
– Still need for forwarding or for indicating whether a register has 

received its value

• Register renaming gets rid of WAW and WAR 
dependencies

• The reorder buffer, as its name implies, can be used for in-
order completion



Reg. ren & Mult. Issue CSE 471 4

More on reorder buffer

• Tomasulo’s scheme can be extended with the possibility of 
completing instructions in order

• Reorder buffer entry contains (this is not the only possible 
solution)
– Type of instruction (branch, store, ALU, or load)

– Destination (none, memory address, register including other ROB 
entry)

– Value and its presence/absence

• Reservation station tags and “true” register tags are now 
ids of entries in the reorder buffer



Reg. ren & Mult. Issue CSE 471 5

Example machine revisited (Fig 2.14 (3.29))
From memory & CDB

From I-unit

Fp registers

To memory

Reservation 
stations

F-p units

Reorder buffer

To CDB (CDB not shown)



Reg. ren & Mult. Issue CSE 471 6

Need for 4 stages

• In Tomasulo’s solution 3 stages: issue, execute, write
• Now 4 stages: issue, execute, write, commit
• Dispatch and Issue

– Check for structural hazards (reservation stations busy, reorder 
buffer full). If one exists, stall the instruction and those following 

– If dispatch possible, send source operand values to reservation 
station if the values are available in either the registers or the 
reorder buffer. Otherwise send tag.

– Allocate an entry in the reorder buffer (rename result register) and 
send its number to the reservation station (to be used as a tag on 
CDB)

– When both operands are ready, issue to functional unit



Reg. ren & Mult. Issue CSE 471 7

Need for 4 stages (c’ed)

• Execute

• Write 
– Broadcast on common data bus the value and the tag (reorder

buffer number). Reservation stations, if any match the tag, and 
reorder buffer (always) grab the value.

• Commit
– When instr. at head of the reorder buffer has its result in the buffer 

it stores it in the real register (for ALU) or memory (for store). The 
reorder buffer entry (and/or physical register) is freed.



Reg. ren & Mult. Issue CSE 471 8

Entry #        Instruction             Issue              Execute         Write result            Commit

1             Load F6, 34(r2)       yes                    yes                   yes                       yes

2             Load F2, 45(r3)       yes                    yes

3            Mul F0, F2, F4         yes                   

4            Sub F8, F6, F2         yes                   

5           Div F10, F0, F6        yes                   

6           Add F6,F8,F2           yes
Reservation Stations

Name      Busy      Fm      Vj Vk Qj Qk

Add 1       yes         Sub   (#1) (#2)          

Add2        yes         Add                               (#4)  (#2)               

Mul1         yes        Mul (F4)        (#2)
Add3          no               

Mul2         yes        Div                  (#1)        (#3)

Register status

F0 (#3)      F2 (#2)      F4 ( )   F6(#6 )      F8 (#4)     F10 (#5)     F12...

Initial

Reorder buffer



Reg. ren & Mult. Issue CSE 471 9

Entry #        Instruction             Issue              Execute         Write result            Commit

1             Load F6, 34(r2)       yes                    yes                   yes                       yes

2             Load F2, 45(r3)       yes                    yes                   yes                       yes

3            Mul F0, F2, F4         yes                    yes

4            Sub F8, F6, F2         yes                     yes

5           Div F10, F0, F6        yes                   

6           Add F6,F8,F2           yes
Reservation Stations

Name      Busy      Fm      Vj Vk Qj Qk

Add 1       no

Add2        yes         Add                 (#2) (#4)

Mul1         yes        Mul (#2) (F4)
Add3          no               

Mul2         yes        Div                  (#1) (#3)

Register status

F0 (#3)     F2( )      F4 ( )   F6(#6 )      F8 (#4)     F10 (#5)     F12...

Reorder buffer

Cycle after 2nd load 
has committed



Reg. ren & Mult. Issue CSE 471 10

Entry #        Instruction             Issue              Execute         Write result            Commit

1             Load F6, 34(r2)       yes                    yes                   yes                       yes

2             Load F2, 45(r3)       yes                    yes                   yes                       yes

3            Mul F0, F2, F4         yes                    yes

4            Sub F8, F6, F2         yes                     yes                   yes

5           Div F10, F0, F6        yes                   

6           Add F6,F8,F2           yes                     yes
Reservation Stations

Name      Busy      Fm      Vj Vk Qj Qk

Add 1       no

Add2        yes         Add    (#2)     (#4)

Mul1         yes        Mul (#2) (F4)
Add3          no               

Mul2         yes        Div                  (#1) (#3)

Register status

F0 (#3)     F2( )      F4 ( )   F6(#6 )      F8 (#4)     F10 (#5)     F12...

Reorder buffer

Cycle after sub 
has written its 
result in reorder 
buffer but can’t 
commit yet

Still waiting for #3 to commit



Reg. ren & Mult. Issue CSE 471 11

Entry #        Instruction             Issue              Execute         Write result            Commit

1             Load F6, 34(r2)       yes                    yes                   yes                       yes

2             Load F2, 45(r3)       yes                    yes                   yes                       yes

3            Mul F0, F2, F4         yes                    yes

4            Sub F8, F6, F2         yes                     yes                   yes

5           Div F10, F0, F6        yes                   

6           Add F6,F8,F2           yes                     yes yes
Reservation Stations

Name      Busy      Fm      Vj Vk Qj Qk

Add 1       no

Add2       no

Mul1         yes        Mul (#2) (F4)
Add3          no               

Mul2         yes        Div                  (#1) (#3)

Register status

F0 (#3)     F2( )      F4 ( )   F6(#6 )      F8 (#4)     F10 (#5)     F12...

Reorder buffer

Still waiting for #3 to commit

Cycle after add 
has written its 
result in reorder 
buffer but 
cannot commit

Still waiting for #3 to commit



Reg. ren & Mult. Issue CSE 471 12

Entry #        Instruction             Issue              Execute         Write result            Commit

1             Load F6, 34(r2)       yes                    yes                   yes                       yes

2             Load F2, 45(r3)       yes                    yes                   yes                       yes

3            Mul F0, F2, F4         yes                    yes yes                        yes

4            Sub F8, F6, F2         yes                     yes                   yes

5           Div F10, F0, F6        yes                     yes

6           Add F6,F8,F2           yes                     yes yes
Reservation Stations

Name      Busy      Fm      Vj Vk Qj Qk

Add 1       no

Add2       no

Mul1         no
Add3          no               

Mul2         yes        Div     (#3) (#1)

Register status

F0 () F2( )      F4 ( )   F6(#6 )      F8 (#4)     F10 (#5)     F12...

Reorder buffer

Still waiting: only 1 commit 
per cycle

Cycle after mul
has written its 
result and 
committed



Reg. ren & Mult. Issue CSE 471 13

Entry #        Instruction             Issue              Execute         Write result            Commit

1             Load F6, 34(r2)       yes                    yes                   yes                       yes

2             Load F2, 45(r3)       yes                    yes                   yes                       yes

3            Mul F0, F2, F4         yes                    yes yes                        yes

4            Sub F8, F6, F2         yes                     yes                   yes                       yes

5           Div F10, F0, F6        yes                     yes

6           Add F6,F8,F2           yes                     yes yes
Reservation Stations

Name      Busy      Fm      Vj Vk Qj Qk

Add 1       no

Add2       no

Mul1         no
Add3          no               

Mul2         yes        Div     (#3) (#1)

Register status

F0 ()     F2( )      F4 ( )   F6(#6 )      F8 () F10 (#5)     F12...

Reorder buffer

Now #4 can 
commit



Reg. ren & Mult. Issue CSE 471 14

Entry #        Instruction             Issue              Execute         Write result            Commit

1             Load F6, 34(r2)       yes                    yes                   yes                       yes

2             Load F2, 45(r3)       yes                    yes                   yes                       yes

3            Mul F0, F2, F4         yes                    yes yes                        yes

4            Sub F8, F6, F2         yes                     yes                   yes                       yes

5           Div F10, F0, F6        yes                     yes

6           Add F6,F8,F2           yes                     yes yes
Reservation Stations

Name      Busy      Fm      Vj Vk Qj Qk

Add 1       no

Add2       no

Mul1         no
Add3          no               

Mul2         yes        Div     (#3) (#1)

Register status

F0 ()     F2( )      F4 ( )   F6(#6 )      F8 ()     F10 (#5)     F12...

Reorder buffer

Still waiting for #4, #5 to commit

The next “interesting 
event is completion 
of div; then commit 
of  #5, then commit 
of  #6



Reg. ren & Mult. Issue CSE 471 15

Register renaming – Physical Register file

• Use a physical register file (as an alternative to reservation 
station or reorder buffer) larger than the ISA logical one

• When instruction is decoded
– Give a new name to result register from free list. The register is 

renamed

– The mapping table is updated

– Give source operands their physical names (from mapping table)



Reg. ren & Mult. Issue CSE 471 16

Register renaming –File of physical registers

• Extra set of registers organized as a free list
• At decode:

– Rename the result register (get from free list; update mapping table). If 
none available, we have a structural hazard

– Note that  several physical registers can be mapped to the same logical 
register (corresponding to instructions at different times; avoids WAW 
hazards)

• When a physical register has been read for the last time, return it to the 
free list
– Have a counter associated with each physical register (+ when a source 

logical register is renamed  to physical register; - when instruction uses 
physical register as operand; release when counter is 0)

– Simpler to wait till logical register has been assigned a new name by a 
later instruction and that later instruction has been committed



Reg. ren & Mult. Issue CSE 471 17

Example

Before: add r3,r3,4                    after         add r37,r3,4                        

add r4,r7,r3 add r38,r7,r37

add r3, r2, r7                                 add r39,r2,r7

Free list r37,r38,r39 ….                At this point r3 is

r2, r3, r4, r7 not renamed yet        remapped from r37 to r39

When r39 commits, r37

will be returned to the                                        

free list



Reg. ren & Mult. Issue CSE 471 18

Conceptual execution on a processor which 
exploits ILP

• Instruction fetch and branch prediction
– Corresponds to IF in simple pipeline 
– Complicated by multiple issue (see in a couple of slides)

• Instruction decode, dependence check, dispatch, issue
– Corresponds (many variations) to ID
– Although instructions are issued (i.e., assigned to functional units), they 

might not execute right away (cf. reservation stations)
– It is at this point that one distinguishes between in-order and out-of-order 

superscalars

• Instruction execution
– Corresponds to EX and/or MEM (with various latencies)

• Instruction commit (for OOO only)
– Corresponds to WB but more complex because of speculation and out-of-

order completion



Reg. ren & Mult. Issue CSE 471 19

Multiple Issue Alternatives

• Superscalar (hardware detects conflicts)
– Statically scheduled (in order dispatch and hence execution; cf.

(DEC)Alpha 21164, Sun processor in Niagara, IBM Cell 
Synergetic Processor)

– Dynamically scheduled (in order issue, out of order dispatch and
execution; cf. MIPS 10000, IBM Power 4 and 5, Intel Pentium P6 
microarchitecture, AMD K5 et al, (DEC)Alpha 21264, Sun 
UltraSparc etc.)

• VLIW – EPIC (Explicitly Parallel Instruction Computing)
– Compiler generates “bundles “ of instructions that can be executed 

concurrently (cf. Intel Itanium, lot of DSP’s)



Reg. ren & Mult. Issue CSE 471 20

Multiple Issue for Static/Dynamic Scheduling

• Issue in order
– Otherwise bookkeeping is complex (the old “data flow” machines could issue any 

ready instruction in the whole program; see also new “grid” machines such as WaveScalar and 
Trip)

– Check for structural hazards; if any stall

• Dispatch for static scheduling
– Check for data dependencies; stall adequately
– Can take forwarding into account

• Dispatch for dynamic scheduling
– Dispatch out of order (reservation stations, instruction window)
– Rename registers
– Requires possibility of dispatching concurrently dependent instructions 

(otherwise little benefit over static scheduling)



Reg. ren & Mult. Issue CSE 471 21

Impact of Multiple Issue on IF

• IF: Need to fetch more than 1 instruction at a time 
– Simpler if instructions are of fixed length

– In fact need to fetch as many instructions as the issue stage can 
handle in one cycle 

– Simpler if restricted not to overlap I-cache lines

– But with branch prediction, this is not realistic hence introduction 
of (instruction) fetch buffers and trace caches

– Always attempt to keep at least as many instructions in the fetch 
buffer as can be issued in the next cycle (BTB’s help for that)

– For example, have an 8 wide instruction buffer for a machine that 
can issue 4 instructions per cycle



Reg. ren & Mult. Issue CSE 471 22

Stalls at the IF Stage

• Instruction cache miss 

• Instruction buffer is full
– Most likely there are stalls in the stages downstream

• Branch misprediction

• Instructions are stored in several I-cache lines
– In one cycle one I-cache line can be brought into fetch buffer

– A basic block might start in the middle (or end) of an I-cache line

– Requires several cache lines to fill the buffer

– The ID (issue-dispatch) stage will stall if not enough instructions in 
the fetch buffer 



Reg. ren & Mult. Issue CSE 471 23

Sample of Old and Current Micros

• Two instruction issue: Alpha 21064, Sparc 2, Pentium, 
Cyrix

• Three instruction issue: Pentium P6 (but 5 uops from IF/ID 
to EX;  Pentium 4 and AMD K7 have 4 uops, Intel Core 
has 6 uops)

• Four instruction issue: Alpha 21164, Alpha 21264, IBM 
Power4 and Power5 (but somewhat restricted), Sun 
UltraSparc, HP PA-8000, MIPS R10000

• Many papers written in mid-90’s predicted 16-way issue 
by 2000. We are still at 4 in 2007!



Reg. ren & Mult. Issue CSE 471 24

The Decode Stage (simple case: dual issue 
and static scheduling)

• ID = Dispatch + Issue
– Some authors would call this “Issue + Dispatch”!

• Look for conflicts between the (say) 2 instructions
– If one integer op. and one f-p op., only check for structural hazard, 

i.e. the two instructions need the same f-u (easy to check with 
opcodes )

– RAW dependencies  resolved as in single pipelines

– Note that the load delay (assume 1 cycle) can  now delay up to  3 
instructions, i.e., 3 issue slots are lost



Reg. ren & Mult. Issue CSE 471 25

Decode in Simple Multiple Issue Case

• If instructions i and i+1 are fetched together and:
– Instruction i stalls, instruction i+1 will stall

– Instruction i is dispatched but instruction i+1 stalls (e.g., because 
of structural hazard = need the same f-u), instruction i+2 will not 
advance to the issue stage. It will have to wait till both i and i+1 
have been dispatched



Reg. ren & Mult. Issue CSE 471 26

Alpha 21164 (@1995) 4-wide

Branch 
history L1 I-cache ITB

Fetch/ 
Decode
IB

IS

Br.Pred

Add/
Mult

Add/ 
Branch

Integer Unit

Add Mult/

Div

F-p Unit

Int. Reg. F-p Reg.

DTB MAF WB

L1 D-cache

L2 cache



Reg. ren & Mult. Issue CSE 471 27

Pipeline. 

S0 S1 S2 S4S3 S5 S6

S4 S5 S6

S4 S5 S6

S7

S8

S8

S7 S9 S10 S11 S12

IF and ID

EX, Mem and WB

Integer  (2 pipes)

Floating-point 
(2 pipes)

L1 Cache access                  L2 cache access 

Front-end

Back-end

Front-end 4 stages; Back-end from 3 to 9



Reg. ren & Mult. Issue CSE 471 28

Alpha 21164 – Front-end

• IF S0: Access I-cache
– Prefetcher fetches 4 instructions (16 bytes) at a time in one of two 

instruction buffers (IB). Each instruction has been predecoded (5 bits)

• IF-S1 : Branch Prediction
– Prefetcher contains branch prediction logic  tested at this stage: 4 entry

return stack; 2 bit/instruction in the I-cache + static prediction BTFNT

• ID-S2: Slotting
– Initial decode yields 0, 1, 2, 3 or 4  instruction potential issue; align 

instructions depending on the functional unit there are headed for. 

• ID-S3. 
– Check for issue: WAW and WAR (my guess) so that all instructions after 

S3 can execute successfully w/o stalls



Reg. ren & Mult. Issue CSE 471 29

Alpha 21164 Restrictions in front-end

• In integer programs, only 2 arithmetic instructions can pass 
from S2 to S3 (structural hazards) 
– This percolates back ….

• In S0, only instructions in the same cache line can be 
fetched in a given cycle 
– Too bad if you branch in the middle of a cache line…

• Target branch address computed in S1
– So if predict taken, you have one “bubble”. Good chance it will be 

amortized by other effects downstream

• S3 uses the equivalent of a (simplified) scoreboard



Reg. ren & Mult. Issue CSE 471 30

Alpha 21164 - Back-end

• Load latency : 2 cycles
– If instruction i is a load issued (leave S3) at time t and inst. i+1 depends 

on it: real bubble since inst i+1 will leave S3 at time t+2
– (If instead of inst i+1 it were inst i+2 that were dependent, could we still have a 

real bubble?)

• Scoreboard does not know if cache hit or miss
– Speculates hit (why?) If wrong, known at S5, instructions already in the 

back-end not dependent on the load can proceed (scoreboard knows that). 
Others are aborted

• On branch mispredict (and precise) exceptions
– Known at S5. All inst. in program order after the branch are aborted
– (how can we enforce precise exceptions on the integer and memory pipelines?)

• Other possible structural hazards due to store buffers etc. (see later)
• What happens on a D-TLB miss?



Reg. ren & Mult. Issue CSE 471 31

Dynamic Scheduling: Reservation stations, 
register renaming and reorder buffer

• Decode means:
– Dispatch to either 

• A centralized  instruction window common to all functional 
units (Pentium Pro, Pentium III and Pentium 4)

• Reservation stations associated with functional units (MIPS 
10000, AMD K5-7, IBM Power4 and Power5)

– Rename registers (either via ROB or physical file)
• Note the difficulty when renaming in the same cycle 

R1 <- R2 + R3; R4 <- R1 + R5

– Set up entry at tail of reorder buffer (if supported by 
architecture)

– Issue operands, when ready, to functional unit



Reg. ren & Mult. Issue CSE 471 32

Stalls in Decode (issue/dispatch) Stage

• If there are decentralized reservation stations, there can be 
several instructions ready to be dispatched in same cycle to 
same functional unit
– Possibility of not enough reservation stations

• If there is a centralized instruction window, there might not 
be enough bus/ports to forward values to the execution 
units that need them in the same cycle

• Both instances are instances of structural hazards
– Conflicts are resolved via a scheduling algorithm

– Try and define critical instructions



Reg. ren & Mult. Issue CSE 471 33

The Execute Stage

• Use of forwarding
– Use of broadcast bus or cross-bar or other interconnection network

• We’ll talk at length about memory operations (load-store) 
in subsequent lecture and when we study memory 
hierarchies



Reg. ren & Mult. Issue CSE 471 34

The Commit Step (in-order completion)

• Recall: need of a mechanism (reorder buffer) to:
– “Complete” instructions in order. This commits the instruction. 

Since multiple issue machine, should be able to commit (retire) 
several instructions per cycle

– Know when an instruction has completed non-speculatively,i.e., 
what to do with branches

– Know whether the result of an instruction is correct, i.e., what to 
do with exceptions



Reg. ren & Mult. Issue CSE 471 35

Impact on Branch Prediction and Completion

• When a conditional branch is decoded:
– Save the current physical-logical mapping

– Predict and proceed

• When branch is ready to commit (head of buffer)
– If prediction correct, discard the saved mapping

– If prediction incorrect
• Flush all instructions following mispredicted branch in reorder buffer

• Restore the mapping as it was before the branch as per the saved map

• Note that there have been proposals to execute both sides 
of a branch using register shadows 
– limited to one extra set of registers



Reg. ren & Mult. Issue CSE 471 36

Exceptions

• Instructions carry their exception status

• When instruction is ready to commit
– No exception: proceed normally

– Exception
• Flush (as in mispredicted branch)

• Restore mapping (more difficult than with branches because the 
mapping is not saved at every instruction; this method can also be 
used for branches)



Reg. ren & Mult. Issue CSE 471 37

Summary: OOO flow of instructions

ROB 
Logical register file
Register map
D-cache

ROB
Physical register file
Store buffer 

Commit

Reservation stations
ROB
Physical register file
Branch Predictor
Store Buffer etc…

Functional Units
D-cache

Execute

Functional units
D-cache

Reservation stationsIssueBack-end

Reservation stations
ROB

Decode Buffer
Register map
Register file (logical and physical)

Dispatch

Decode Buffer
Register map
ROB

Instruction Buffer
Register map

Decode-rename

PC
Instruction Buffer

PC
Branch Predictor
I-cache

FetchFront-end

Resources written or utilizedResources readStep



Reg. ren & Mult. Issue CSE 471 38

Pentium Family (slightly more details in H&P            

Sec 2.10 (3.10 in 3rd))

• Fetch-Decode unit
– Transforms up to 3 instructions at a time into micro-operations 

(uops) and stores them in a global reservation table (instruction 
window). Does register renaming (RAT = register alias table)

• Dispatch (aka issue)-execution unit
– Issues uops to functional units that execute them and temporarily 

store the results 
• Depending on the implementation from 3 to 6 uops can be issued 

concurrently

• Retire unit 
– Commits the instructions in order (up to 3 commits/cycle)



Reg. ren & Mult. Issue CSE 471 39

Fetch/Decode/
Dispath unit;       
8 stages of the 
pipe

Execute Unit: 5 to 
10 different funct. 
Units. EX takes 
from 1 to 32 cycles 

Retire unit: 3 
stages

Instruction pool

The  3 units of the Pentium P6 are “independent”
and communicate through the instruction pool



Reg. ren & Mult. Issue CSE 471 40

L2 cache

Bus interface

L1 I-cache ITLB L1 D-cache

Br. pred

DecoderMIS

Reg. map (RAT)

RS

ROB

RF

Agu

Fpu

Iu

MMX

DTLB

Fetch/Decode 
unit

Exec/Dispatch 
unit

Instr. Pool & 
retire unit

MOB



Reg. ren & Mult. Issue CSE 471 41

A Few More Details: Front-end

• Instruction Fetch (not in Pentium 4)
– 4 (mini) stages for IF

1. Access BTB-BPB combination (what if a miss?). If hit and predicted taken, 
a bubble is generated

2. Initiates I-cache access at address given by BTB (what if a miss?)
3. Continues I-cache access
4. Completes I-cache access and transfer 16 bytes in Decode buffer

• Instruction Decode 
– 3 (mini) stages 

1 and 2. Find end of first 3 instructions and break then down in µops
– only one branch decoded
– Some CISC instructions require the “leftmost” decoder (MIS)
3. Detect branches; can correct some situations (undetected unconditional branch 

for example)



Reg. ren & Mult. Issue CSE 471 42

Front-end (ctd)

• Register renaming

• Enter µops in reservation stations and ROB



Reg. ren & Mult. Issue CSE 471 43

Back-end

• µops can get executed when
– Operands are available
– The Execution Unit for that µop is available
– A result bus will be available at completion
– No more “important” µop should be executed  
– So it takes two cycle (pipe stages) to do all that. Then:

• µops are executed
– We’ll see about load-store later

• Commit (aka retire)
– All µops from the same instruction should be retired together (done 

by marking beg. And end of instructions when put in the ROB)



Reg. ren & Mult. Issue CSE 471 44

Limits to Hardware-based ILP

• Inherent lack of parallelism in programs
– Partial remedy: loop unrolling and other compiler optimizations

– Branch prediction to allow earlier issue and dispatch

• Complexity in hardware
– Needs large bandwidth for instruction fetch (might need to fetch

from more than one I-cache line in one cycle)

– Requires large register bandwidth (multiported register files )

– Forwarding/broadcast requires “long wires” (long wires are slow) 
as soon as there are many units.



Reg. ren & Mult. Issue CSE 471 45

Limits to Hardware-based ILP (c’ed)

• Difficulties specific to the implementation
– More possibilities of structural hazards (need to encode some 

priorities in case of conflict in resource allocations)

– Parallel search in reservation stations, reorder buffer etc.

– Additional state savings for branches (mappings), more complex 
updating of BPT’s and BTB’s.

– Keeping precise exceptions is more complex



This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

