Reorder Buffer: register renaming and in-
order completion

Use of areorder buffer
— Reorder buffer = circular queue with head and tail pointers

At issue (renaming time), an instruction is assigned an entry at the tail
of the reorder buffer (ROB) which becomes the name of (or a pointer
to) the result register.

— Recall that instructions are issued in program order, thus the ROB stores
instructions in program order

At end of functional-unit computation, value is put in the instruction
reorder buffer’ s position

When the instruction reaches the head of the buffer, its value is stored
in the logical or physical (other reorder buffer entry) register.

Need of a mapping table between logical registers and ROB entries

Reg. ren & Mult. Issue CSE 471

Example

Before: add r3,r3,4 after add rob6,r3,4
add r4.r7,r3 add I7,rob6
add r3, r2, r7 add rob8,r2,r7

Assume reorder buffer isinitially at position 6 and has more
than 8 slots

The mapping table indicates the correspondence between
ROB entries and logical registers

Reg. ren & Mult. Issue CSE 471

Data dependencies with register renaming

* Register renaming does not get rid of RAW dependencies

— Still need for forwarding or for indicating whether aregister has
received its value

* Register renaming gets rid of WAW and WAR
dependencies

* Thereorder buffer, asits name implies, can be used for in-
order completion

Reg. ren & Mult. Issue CSE 471

More on reorder buffer

Tomasulo’ s scheme can be extended with the possibility of
completing instructions in order

Reorder buffer entry contains (this is not the only possible
solution)
— Type of instruction (branch, store, ALU, or load)

— Destination (none, memory address, register including other ROB
entry)

— Value and its presence/absence

Reservation station tags and “true’ register tags are now
Ids of entries in the reorder buffer

Reg. ren & Mult. Issue CSE 471 4

Example machine revisited (Fig 2.14 (3.29))

Reorder buffer Fqm memory & CDB

F{om |-unit
To mgmory
Fp registers
/ /
Reservation
stations
\ / To CDB (CDB nor shown)
F-p units

Reg. ren & Mult. Issue CSE 471 5

Need for 4 stages

In Tomasulo’ s solution 3 stages: 1ssue, execute, write
Now 4 stages:. issue, execute, write, commit
Dispatch and Issue

Check for structural hazards (reservation stations busy, reorder
buffer full). If one exists, stall the instruction and those following

If dispatch possible, send source operand values to reservation
station if the values are available in either the registers or the
reorder buffer. Otherwise send tag.

Allocate an entry in the reorder buffer (rename result register) and
send its number to the reservation station (to be used asatag on
CDB)

When both operands are ready, issue to functional unit

Reg. ren & Mult. Issue CSE 471

Need for 4 stages (¢’ ed)

e EXecute

e Write

— Broadcast on common data bus the value and the tag (reorder
buffer number). Reservation stations, if any match the tag, and
reorder buffer (always) grab the value.

e Commit

— Wheningtr. a head of the reorder buffer has its result in the buffer
It storesit inthereal register (for ALU) or memory (for store). The
reorder buffer entry (and/or physical register) isfreed.

Reg. ren & Mult. Issue CSE 471 7

Reorder buffer

Entry # Instruction |ssue Execute Write result
1 Load F6, 34(r2) yes yes yes
2 Load F2,45(r3) yes yes
3 Mul FO, F2, F4 yes
4 Sub F8, F6, F2 yes
5 Div F10, FO, F6 yes
6 Add F6,F8,F2

€S . .
F¥eservatl on Stations
Name Busy Fm Vj Vk Qj Qk

Addl vyes Sub (#2)

Add2 es Add #4 #2

Add3 yno))

Mull yes Mul) (#2)

Mul2 yes Div) (#3)
Register status

FO#3) F2(#) FA() F6(#6) F8(#4) FlO#H5) FI12..

Reg. ren & Mult. Issue CSE 471

Commit

Initia

YES

Reorder buffer

Entry # Instruction |ssue Execute Write result Commit

1 Load F6, 34(r2) yes yes yes yes

2 Load F2,45(r3) yes yes yes yes
3 Mul FO, F2, F4 yes yes

4 Sub F8, F6, F2 yes yes Cycle after 2nd load
5 DivF10,FO,F6 yes has commitied

6 Add F6,F8,F2 |%/es _ _

eservation Stations

Name Busy Fm Vj Vk Qj Qk
Addl no
ﬁgg% y(neg Add (#2) (#4)

Mull yes Mul (#2) (F4)

Mul2 yes Div (#1) (#3)

Register status
FO#3) F2() F4() F6(#6) F8(#4) F10(#5) Fi12..

Reg. ren & Mult. Issue CSE 471

Reorder buffer

Entry # Instruction |ssue Execute Write result Commit
1 Load F6, 34(r2) yes yes yes yes
2 Load F2, 45(r3) yes yes yes yes
3 Mul FO, F2, F4 yes yes
4 Sub F8, F6, F2 yes yes yes
5 Div F10, FO, F6 yes Cycle after sub
6 AddFoF8F2 yes . Ve has written its
eservation Stations result in reorder
Name Busy Fm Vi Vk Q Qk buiffer but can't
commit yet
Addl no
Add2 es Add (#2) (#4)
Add3 yno)
Mull yes Mul (#2) (F4)
Mul2 yes Div (#1) (#3) Still waiting for #3 to commit

Register status /

FO#3) F2() FA() Fe(#6) F8(#4) Fl0#5) FI12..

Reg. ren & Mult. Issue CSE 471 10

Reorder buffer

Entry # Instruction |ssue Execute Write result Commit
1 Load F6, 34(r2) yes yes yes yes
2 Load F2, 45(r3) yes yes yes yes
3 Mul FO, F2, F4 yes yes
4 Sub F8, F6, F2 yes yes yes
5 Div F10, FO, F6 yes
6 Add F6,F8,F2 |%/es _ yes yes
eservation Stations

_ _ Cycle after add
Name Busy Fm Vj VK Qj Qk has written its
Addl no result in reorder
Add2 no buffer but .
Add3 no cannot commit
Mull yes Mul (#2) (F4)
Mul2 yes Div (#1) (#3) Still waiting for #3 to commit

Register status /

FO#3) F2() FA() Fe(#6) F8(#4) Fl0#5) FI12..

Still waiting for #3 to commit
Reg. ren & Mult. Issue CSE 471 11

Reorder buffer

Entry # Instruction |ssue Execute Write result Commit

1 Load F6, 34(r2) yes yes yes yes
2 Load F2, 45(r3) yes yes yes yes
3 Mul FO, F2, F4 yes yes yes yes
4 Sub F8, F6, F2 yes yes yes
5 Div F10, FO, F6 yes yes
6 Add F6,F8,F2 |%/es _ yes yes

eservation Stations
Name Busy Fm Vj Vk Qj Qk Cycle after mul
Add1l o has written its
Add2 result and
Add3 ngo committed
Mull no
Mul2 yes Div. (#3) (#1) Still waiting: only 1 commit

Reg| ster status /pg Cycl e

FO() F2() F4() Fe#6) F8(#4) FIlO@#5) Fl12..

Reg. ren & Mult. Issue CSE 471 12

Entry #

1
2
3
4
)
6

Name
Add 1

Add2
Add3

Mull
Mul2

FO ()

Reorder buffer

Instruction |ssue Execute Write result Commit
Load F6, 34(r2) yes yes yes yes
Load F2,45(r3) yes yes yes yes
Mul FO, F2, F4 yes yes yes yes
Sub F8, F6, F2 yes yes yes yes

Div F10, FO, F6 yes yes
Add F6,F8,F2 |%/es _ yes yes
eservation Stations
Busy Fm Vj Vk Qj Qk Now #4 can
no commit
no
no
no
yes Div (#3) (#1)
Register status

F2() F4() F6#6) F8() FlOM#5) FI12...

Reg. ren & Mult. Issue CSE 471 13

Reorder buffer

Entry # Instruction |ssue Execute Write result Commit
1 Load F6, 34(r2) yes yes yes yes
2 Load F2, 45(r3) yes yes yes yes
3 Mul FO, F2, F4 yes yes yes yes
4 Sub F8, F6, F2 yes yes yes yes
5 Div F10, FO, F6 yes yes
6 Add F6,F8,F2 |%/es _ yes yes

eservation Stations

Name Busy Fm V] Vk Q Qk The next “interesting
Addl no event is completion
Add? of div; then commit
Add3 ”ﬁo of #5, then commit
Mull no of #6
Mul2 yes Div. (#3) (#1)

Register status

FOO) F2() F4() Fe#6) F8() FlLOM#5) FI12...

Still waiting for #4, #5 to commit
Reg. ren & Mult. Issue CSE 471 14

Register renaming — Physical Register file

o Useaphysical register file (as an alternative to reservation
station or reorder buffer) larger than the ISA logical one

 \When instruction is decoded

— Give anew name to result register from free list. The register is
renamed

— The mapping table is updated
— Give source operands their physical names (from mapping table)

Reg. ren & Mult. Issue CSE 471 15

Register renaming —File of physical registers

Extra set of registers organized asafreelist

At decode:

— Rename the result register (get from free list; update mapping table). If
none available, we have a structural hazard

— Notethat severa physical registers can be mapped to the same logical
register (corresponding to instructions at different times; avoids WAW

hazards)
When aphysical register has been read for the last time, return it to the
freelist

— Have acounter associated with each physical register (+ when a source
logical register isrenamed to physical register; - when instruction uses
physical register as operand; release when counter is 0)

— Simpler to wait till logical register has been assigned a new name by a
later instruction and that later instruction has been committed

Reg. ren & Mult. Issue CSE 471 16

Example

Before: add r3,r3,4 after add r37,r3,4
add r4,r7,r3 add r38,r7,r37
add r3, r2, r7 add r39,r2,r7

Freelist r37,r38,r39 At thispoint r3is

2, r3, r4, r7 not renamed yet remapped from r37 to r39
When r39 commits, r37
will be returned to the
freelist

Reg. ren & Mult. Issue CSE 471 17

Conceptual execution on a processor which
exploits ILP

Instruction fetch and branch prediction

— Correspondsto IF in simple pipeline

— Complicated by multiple issue (see in a couple of slides)
Instruction decode, dependence check, dispatch, issue

— Corresponds (many variations) to 1D

— Although instructions are issued (i.e., assigned to functional units), they
might not execute right away (cf. reservation stations)

— Itisat thispoint that one distinguishes between in-order and out-of -order
superscalars
| nstruction execution
— Correspondsto EX and/or MEM (with various latencies)

| nstruction commit (for OOO only)

— Corresponds to WB but more complex because of speculation and out-of -

order completion
Reg. ren & Mult. Issue CSE 471 18

Multiple |ssue Alternatives

e Superscalar (hardware detects conflicts)

— Statically scheduled (in order dispatch and hence execution; cf.
(DEC)Alpha 21164, Sun processor in Niagara, IBM Cell
Synergetic Processor)

— Dynamically scheduled (in order issue, out of order dispatch and
execution; cf. MIPS 10000, IBM Power 4 and 5, Intel Pentium P6
microarchitecture, AMD K5 et al, (DEC)Alpha 21264, Sun
UltraSparc etc.)

 VLIW —EPIC (Explicitly Parallel Instruction Computing)

— Compiler generates “bundles “ of instructions that can be executed
concurrently (cf. Intel Itanium, lot of DSP's)

Reg. ren & Mult. Issue CSE 471 19

Multiple Issue for Static/Dynamic Scheduling

|ssuein order

— Otherwise bookkeeping is complex (the old “data flow” machines could issue any
ready instruction in the whole program; see al'so new “grid” machines such as WaveScalar and
Trip)

— Check for structural hazards; if any stall
Dispatch for static scheduling
— Check for data dependencies; stall adequately
— Can take forwarding into account
Dispatch for dynamic scheduling
— Dispatch out of order (reservation stations, instruction window)
— Rename registers

— Requires possibility of dispatching concurrently dependent instructions
(otherwise little benefit over static scheduling)

Reg. ren & Mult. Issue CSE 471 20

lmpact of Multiple Issue on IF

 |F: Need to fetch morethan 1 instruction at atime

Simpler if instructions are of fixed length

In fact need to fetch as many instructions as the issue stage can
handle in one cycle

Simpler if restricted not to overlap I-cache lines

But with branch prediction, thisis not realistic hence introduction
of (instruction) fetch buffers and trace caches

Always attempt to keep at least as many instructionsin the fetch
buffer as can be issued in the next cycle (BTB’s help for that)

For example, have an 8 wide instruction buffer for a machine that
can issue 4 instructions per cycle

Reg. ren & Mult. Issue CSE 471 21

Stalls at the | F Stage

| nstruction cache miss

Instruction buffer isfull
— Most likely there are stalls in the stages downstream

Branch misprediction

Instructions are stored in several |-cache lines
— In one cycle one I-cache line can be brought into fetch buffer
— A basic block might start in the middle (or end) of an I-cacheline
— Requires several cache linesto fill the buffer

— TheID (issue-dispatch) stage will stall if not enough instructionsin
the fetch buffer

Reg. ren & Mult. Issue CSE 471 22

Sample of Old and Current Micros

Two instruction issue: Alpha 21064, Sparc 2, Pentium,
Cyrix
Three instruction issue: Pentium P6 (but 5 uops from IF/ID

to EX; Pentium 4 and AMD K7 have 4 uops, Intel Core
has 6 uops)

Four instruction issue: Alpha 21164, Alpha 21264, IBM
Power4 and Power5 (but somewhat restricted), Sun
UltraSparc, HP PA-8000, MIPS R10000

Many papers written in mid-90’ s predicted 16-way issue
by 2000. We are still at 4 in 2007!

Reg. ren & Mult. Issue CSE 471 23

The Decode Stage (ssmple case: dual issue
and static scheduling)

e |D = Dispatch + Issue
— Some authors would call this “Issue + Dispatch”!
» Look for conflicts between the (say) 2 instructions

— If oneinteger op. and one f-p op., only check for structural hazard,
I.e. the two instructions need the same f-u (easy to check with
opcodes)

— RAW dependencies resolved asin single pipelines
— Notethat the load delay (assume 1 cycle) can now delay upto 3
Instructions, i.e., 3 issue slots are lost

Reg. ren & Mult. Issue CSE 471 24

Decode in Simple Multiple Issue Case

e If instructionsi and i+1 are fetched together and.:

— Instruction i stalls, instruction i+1 will stall

— Instruction i isdispatched but instruction i+1 stalls (e.g., because
of structural hazard = need the same f-u), instruction i+2 will not
advance to the issue stage. It will have to wait till bothi and i+1

have been dispatched

Reg. ren & Mult. Issue CSE 471

25

Alpha 21164 (@1995) 4-wide

Branch
Y
Fetch/
Integer Unit Decode [™ F-pUnit
IB
Add/ Add/ S Add Mult/
Mult Branch i
Br.Pred e
A
A\ 4
Int. Reg. F-p Reg.
DTB MAF WB
¢ /
L1 D-cache N
L2 cache

Reg. ren & Mult. Issue CSE 471

26

SO | Sl |2 | s3 $4 | S5 | S6 Integer (2 pipes)

$4 | S5 | S6 S7 | S8 Floating-point
IFand ID (2 pipes)

$4 | S5 | 6| S7 (S8 |9 |S10 | S11| S12
Front-end

L1 Cache access

L2 cache access

EX, Mem and WB

Back-end

Front-end 4 stages, Back-end from 3t0 9

Reg. ren & Mult. Issue CSE 471

27

Alpha 21164 — Front-end

|F SO: Access |-cache

— Prefetcher fetches 4 instructions (16 bytes) at atime in one of two
instruction buffers (1B). Each instruction has been predecoded (5 bits)

|F-S1 : Branch Prediction

— Prefetcher contains branch prediction logic tested at this stage: 4 entry
return stack; 2 bit/instruction in the I-cache + static prediction BTFNT

|D-S2: Slotting

— Initial decodeyieldsO, 1, 2, 3 or 4 instruction potential issue; align
instructions depending on the functional unit there are headed for.

ID-S3.

— Check for issue: WAW and WAR (my guess) so that all instructions after
S3 can execute successfully w/o stalls

Reg. ren & Mult. Issue CSE 471 28

Alpha 21164 Restrictions in front-end

In integer programs, only 2 arithmetic instructions can pass
from S2 to S3 (structural hazards)

— This percolates back

In SO, only instructions in the same cache line can be
fetched in agiven cycle

— Too bad if you branch in the middle of acacheline...

Target branch address computed in S1

— Soif predict taken, you have one “bubble”. Good chance it will be
amortized by other effects downstream

S3 uses the equivalent of a (ssmplified) scoreboard

Reg. ren & Mult. Issue CSE 471 29

Alpha 21164 - Back-end

Load latency : 2 cycles

— If instructioni isaload issued (leave S3) at timet and inst. i+1 depends
onit: real bubblesinceinst i+1 will leave S3 at timet+2

— (If instead of inst i+1 it were inst i+2 that were dependent, could we still have a
real bubble?)

Scoreboard does not know if cache hit or miss

— Speculates hit (why?) If wrong, known at S5, instructions already in the
back-end not dependent on the load can proceed (scoreboard knows that).
Others are aborted

On branch mispredict (and precise) exceptions

— Known at S5. All inst. in program order after the branch are aborted
— (how can we enforce precise exceptions on the integer and memory pipelines?)

Other possible structural hazards due to store buffers etc. (see later)
What happens on aD-TLB miss?

Reg. ren & Mult. Issue CSE 471 30

Dynamic Scheduling: Reservation stations,
register renaming and reorder buffer

e Decode means:

— Digpatch to either

e A centralized instruction window common to all functional
units (Pentium Pro, Pentium 111 and Pentium 4)

» Reservation stations associated with functional units (MIPS
10000, AMD K5-7, IBM Power4 and Powerb)

— Rename registers (either via ROB or physical file)
* Note the difficulty when renaming in the same cycle
R1<-R2+R3;R4<-R1+R5

— Set up entry at tail of reorder buffer (if supported by
architecture)

— |ssue operands, when ready, to functional unit
Reg. ren & Mult. Issue CSE 471

31

Stalls in Decode (1ssue/dispatch) Stage

If there are decentralized reservation stations, there can be
several instructions ready to be dispatched in same cycle to
same functional unit

— Possihility of not enough reservation stations

If there Is a centralized instruction window, there might not
be enough bus/ports to forward values to the execution
units that need them in the same cycle

Both instances are instances of structural hazards

— Conflicts are resolved via a scheduling algorithm
— Try and define critical instructions

Reg. ren & Mult. Issue CSE 471 32

The Execute Stage

Use of forwarding
— Use of broadcast bus or cross-bar or other interconnection network

we'll talk at length about memory operations (load-store)
IN subsequent lecture and when we study memory
hierarchies

Reg. ren & Mult. Issue CSE 471 33

The Commit Step (in-order compl etion)

e Recall: need of a mechanism (reorder buffer) to:

— “Complete”’ instructions in order. This commits the instruction.
Since multiple issue machine, should be able to commit (retire)
several instructions per cycle

— Know when an instruction has completed non-speculatively,i.e.,
what to do with branches

— Know whether the result of an instruction is correct, i.e., what to
do with exceptions

Reg. ren & Mult. Issue CSE 471

lmpact on Branch Prediction and Completion

When a conditional branch is decoded:
— Save the current physical-logical mapping
— Predict and proceed
When branch is ready to commit (head of buffer)

— If prediction correct, discard the saved mapping
— |If prediction incorrect
» Flush al instructions following mispredicted branch in reorder buffer
» Restore the mapping as it was before the branch as per the saved map
Note that there have been proposals to execute both sides
of abranch using register shadows
— limited to one extra set of registers

Reg. ren & Mult. Issue CSE 471 35

Exceptions

 Instructions carry their exception status

 When instruction is ready to commit
— No exception: proceed normally
— Exception
* Flush (asin mispredicted branch)

» Restore mapping (more difficult than with branches because the
mapping is not saved at every instruction; this method can aso be
used for branches)

Reg. ren & Mult. Issue CSE 471

36

Summary: OOO flow of Instructions

Step Resources read Resources written or utilized
Front-end Fetch PC PC
Branch Predictor Instruction Buffer
|-cache
Decode-rename Instruction Buffer Decode Buffer
Register map Register map
ROB
Dispatch Decode Buffer Reservation stations
Register map ROB
Register file (logical and physical)
Back-end |ssue Reservation stations Functional units
D-cache
Execute Functiona Units Reservation stations
D-cache ROB
Physical register file
Branch Predictor
Store Buffer etc...
Commit ROB ROB
Physical register file Logical register file
Store buffer Register map
D-cache

Reg. ren & Mult. Issue CSE 471

37

Pentium Family (slightly more detailsin H& P
Sec 2.10 (3.10in 3))

* Fetch-Decode unit

— Transforms up to 3 instructions at atime into micro-operations
(uops) and stores them in a global reservation table (instruction
window). Does register renaming (RAT = register aliastable)

» Dispatch (akaissue)-execution unit

— Issues uops to functional units that execute them and temporarily
store the results

» Depending on the implementation from 3 to 6 uops can be issued
concurrently

e Retireunit
— Commitsthe instructions in order (up to 3 commits/cycle)

Reg. ren & Mult. Issue CSE 471

38

FetctvDecode/ Execute Unit: 5t

g ';ZSI; ‘;’;'tthe 10 different funct. ze“; unit: 3
oipe Units. EX takes g

from 1 to 32 cycles

I nstruction pool

The 3 units of the Pentium P6 are “independent”
and communicate through the instruction pool

Reg. ren & Mult. Issue CSE 471

Businterface
\ 4
L1 I-cache ITLB L1 D-cache DTLB [¢ >
1)
v Exec/Dispatch
Fetch/Decode MOB unit
unit Br. pred 7y
A P o
v Agu D
MIS [« Decoder | Fpu
| lu
A\ 4 RS
MMX
Reg. map (RAT)
» ROB ¢ >
RF
Instr. Pool &
retire unit

Reg. ren & Mult. Issue CSE 471

40

A Few More Details: Front-end

Instruction Fetch (not in Pentium 4)
— 4 (mini) stagesfor IF
1. Access BTB-BPB combination (what if amiss?). If hit and predicted taken,
a bubble is generated
2. Initiates |-cache access at address given by BTB (what if amiss?)
3. Continues I-cache access
4. Completes |-cache access and transfer 16 bytes in Decode buffer

Instruction Decode

— 3 (mini) stages
1 and 2. Find end of first 3 instructions and break then down in piops
— only one branch decoded
— Some CISC instructions require the “leftmost” decoder (MIS)

3. Detect branches; can correct some situations (undetected unconditional branch
for example)

Reg. ren & Mult. Issue CSE 471 41

Front-end (ctd)

* Register renaming
e Enter Lops in reservation stations and ROB

Reg. ren & Mult. Issue CSE 471

42

Back-end

e HOpPS can get executed when
— Operands are available
— The Execution Unit for that pop is available
— A result buswill be available at completion
— No more “important” pop should be executed
— S0 it takes two cycle (pipe stages) to do all that. Then:

* [ops are executed
— We'll see about |oad-store |ater

o Commit (akaretire)

— All pops from the same instruction should be retired together (done
by marking beg. And end of instructions when put in the ROB)

Reg. ren & Mult. Issue CSE 471 43

Limits to Hardware-based ILP

* Inherent lack of parallelism in programs

— Partia remedy: loop unrolling and other compiler optimizations
— Branch prediction to allow earlier issue and dispatch

e Complexity in hardware

— Needs large bandwidth for instruction fetch (might need to fetch
from more than one I-cache line in one cycle)

— Requires large register bandwidth (multiported register files)

— Forwarding/broadcast requires “long wires’ (long wires are slow)
as soon as there are many units.

Reg. ren & Mult. Issue CSE 471

Limits to Hardware-based ILP (¢’ ed)

 Difficulties specific to the implementation

— More possibilities of structural hazards (need to encode some
prioritiesin case of conflict in resource allocations)

— Pardlel search in reservation stations, reorder buffer etc.

— Additional state savings for branches (mappings), more complex
updating of BPT'sand BTB's.

— Keeping precise exceptions is more complex

Reg. ren & Mult. Issue CSE 471 45

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

