WaveScalar [MICRO 03] WaveScalar

Dataflow machine
+ good at exploitin_g ILP y ) ‘ Additional motivation:
+ dataflow parallelism + traditional coarser-grain parallelism - increasing disparity between computation (fast transistors) &

+ cheap thread management _ o communication (long wires)
+ low operand latency because of a hierarchical organization . . o .
increasing circuit complexity

» memory ordering enforced through wave-ordered memory
+ no special languages + decreasing fabrication reliability
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Monolithic von Neumann Processors WaveScalar’s Microarchitecture

Good performance via distributed microarchitecture ©

Butin 20167 + hundreds of PEs
- dataflow execution — no centralized control
® Performance + short point-to-point communication
Centralized processing & control, + organized hierarchically for fast communication between
e.g., operand broadcast networks neighboring PEs
+ scalable
® Complexity Low design complexity through simple, identical PEs ©
40-75% of “design” time is design + design one & stamp out thousands

verification
Defect tolerance ©

@ Defect tolerance - route around a bad PE
1 flaw -> paperweight
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Processing Element PEs in a Pod

+  Simple, small (.5M transistors)

« 5-stage pipeline (receive input
operands, match tags, instruction
schedule, execute, send output)

+ Share operand bypass network
+ Back-to-back producer-consumer

« Holds 64 (decoded) instructions

execution across PEs

+ 128-entry token store
« 4-entry output buffer

Spring 2006 471

+ Relieve congestion on intra-
domain bus
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Long distance
communication

Domain Cluster
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WaveScalar Processor Whole Chip

o | oabt: | ed | A - Can hold 32K instructions
Normal memory hierarchy

Traditional directory-based
cache coherence

dynamic routing
grid-based network

3 =

2-cycle hop/cluster : : : T +  ~400 mm2in 90 nm

y - - echnology
: : 1GHz.
~85 watts ¢

’

Spring 2006 471 9 Spring 2006 471 10

WaveScalar Instruction Placement Instruction Placement Trade-offs

operand latency vs.
parallelism (resource conflicts)

int *V; (;ﬁ
int a, b; L‘—J
int ¢, d, r; s B
(ec)
r = a*c + b*d;
(D j)

V[al] = 2*%r + d << 2;
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WaveScalar Instruction Placement

Place instructions in PEs to maximize data locality & instruction-level
parallelism.
+ Instruction placement algorithm based on a performance model
that captures the important performance factors [SPAA 06]

+ Depth-first traversal of dataflow graph to make chains of
dependent instructions

» Broken into segments [ASPLOS 06]

+ Snakes segments across the chip on demand

+ K-loop bounding to prevent instruction “explosion”
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Example to lllustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];
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Example to lllustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];
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Example to lllustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];
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Example to lllustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*]];
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Example to lllustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];
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Example to lllustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

Global load-store ordering issue
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Wave-ordering Example Store buffer

Load [2]3]4]

[ )
[ )
~2[3]4]
Store -.
-. Store Load -
[5]6)8] Load T
Store -./ :
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WaveScalar Tag-matching

WaveScalar tag
« thread identifier <2:5>.3 <2:5>.6
« wave number

Token: tag & value

<ThreadID:Wave#>).
<2:5>.9
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Wave-ordered Memory

Load 21514

Compiler annotates memory St
ore[3[4]?]

operations

B sequence #

B successor -. Store

M predecessor

IBI6IE] Loz
Send memory requests
in any order \
Hardware reconstructs the

correct order Store -

Load [4]7]8]
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Wave-ordered Memory +
[TT]
Waves are loop-free sections of the **
dataflow graph

Each dynamic wave has a wave number
Wave number is incremented between

waves
[

Ordering memory: 1

+ wave-numbers
N
[T

» sequence number within a wave
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Single-thread Performance
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Single-thread Performance per Area

Performance per area
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Creating & Terminating a Thread

<t: w> s <|:w>.u
<tw>.d
<tws.e
<tw=f MemorySequenceStan
<tw>.u

Da!aToTnvead

<s! .d
<siu>.e

l :i usf
Ordered thread body
executes

UOnRaI0 PRaIyL
r 1

-
3
B MemorySequenceStop
o
g <s:uxfinished
g
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Performance of Coarse-grain Parallelism

3 o ocean water radix average
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Multithreading the WaveCache

Architectural-support for WaveScalar threads
+ instructions to start & stop memory orderings, i.e., threads

» memory-free synchronization to allow exclusive access to data
(thread communicate instruction)

- fence instruction to allow other threads to see this one’s memory
ops

Combine to build threads with multiple granularities

+ coarse-grain threads: 25-168X over a single thread; 2-16X over
CMP, 5-11X over SMT

« fine-grain, dataflow-style threads: 18-242X over single thread
« combine the two in the same application: 1.6X or 7.9X -> 9X
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Thread Creation Overhead
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Relies on:
Cheap synchronization

Load once, pass data (not load/compute/store) Building the WaveCache
Performance of Fine-grain Parallelism

RTL-level implementation [ISCA 06]

300
+ some didn’t believe it could be built in a normal-sized chip
° 250 + some didn’t believe it could achieve a decent cycle time and load-
1 M use latencies
s . .
£ 200 Eserial + Verilog & Synopsis CAD tools
@
£ 50 B coarse- Different WaveCache'’s for different applications
§ i - ?ra'n . - 1 cluster: low-cost, low power, single-thread or embedded
g 100 ine-grain + 42 mm2in 90 nm process technology, 2.2 AIPC on Splash2
g + 16 clusters: multiple threads, higher performance: 378 mmz2, 15.8
& so AIPC
o J |, mi1] Board-level FPGA implementation

mmul  lcs fir + OS & real application simulations
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Compiling for the WaveCache

Eliminating dataflow control flow instructions [PACT 06]
+ some didn’t believe it could be built in a normal-sized chip

+ some didn'’t believe it could achieve a decent cycle time and load-
use latencies

+ Verilog & Synopsis CAD tools

Different WaveCache’s for different applications
» 1 cluster: low-cost, low power, single-thread or embedded
+ 42 mm2in 90 nm process technology, 2.2 AIPC on Splash2

+ 16 clusters: multiple threads, higher performance: 378 mm?2, 15.8
AIPC

Board-level FPGA implementation
« OS & real application simulations
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