
1

Winter 2006 CSE 548 - R10000 Register
Renaming

1

Dynamic Scheduling

Why go out of style?

• expensive hardware for the time (actually, still is, relatively)

• register files grew so less register pressure

• early RISCs had lower CPIs

Winter 2006 CSE 548 - R10000 Register
Renaming

2

Dynamic Scheduling

Why come back?
• higher chip densities
• greater need to hide latencies as:

• discrepancy between CPU & memory speeds increases
• branch misprediction penalty increases from superpipelining

• dynamic scheduling was generalized to cover more than floating
point operations

• handles branches & hides branch latencies
• hides cache misses
• can be implemented with a more general register renaming

mechanism
• commits instructions in-order to preserve precise interrupts
• processors now issue multiple instructions at the same time

• more need to exploit ILP

2 styles: large physical register file & reorder buffer
(R10000-style) (PentiumPro-style)

2

Winter 2006 CSE 548 - R10000 Register
Renaming

3

Register Renaming with A Physical Register File

Register renaming provides a mapping between 2 register sets
• architectural registers defined by the ISA
• physical registers implemented in the CPU

• hold results of the instructions committed so far
• hold results of subsequent instructions that have not yet

committed
• more of them than architectural registers

• ~ issue width * # pipeline stages between register
renaming & commit

Winter 2006 CSE 548 - R10000 Register
Renaming

4

Register Renaming with A Physical Register File

How does it work?:

• an architectural register is mapped to a physical register during a
register renaming stage in the pipeline

• destination registers create mappings

• source registers use mappings

• operands thereafter are called by their physical register number

• hazards determined by comparing physical register numbers,
not architectural register numbers

3

Winter 2006 CSE 548 - R10000 Register
Renaming

5

A Register Renaming Example

Code Segment Register Mapping Comments

ld r7,0(r6) r7 -> p1 p1 is allocated
...

add r8, r9, r7 r8 -> p2 use p1, not r7

...

sub r7, r2, r3 r7 -> p3
p3 is allocated
p1 is deallocated
when sub commits

Winter 2006 CSE 548 - R10000 Register
Renaming

6

Register Renaming with A Physical Register File

Effects:
• eliminates WAW and WAR hazards (false name dependences)
• increases ILP

4

Winter 2006 CSE 548 - R10000 Register
Renaming

7

An Implementation (R10000)

Modular design with regular hardware data structures

Structures for register renaming

• 64 physical registers (each, for integer & FP)

• map tables for the current architectural-to-physical register
mapping (separate, for integer & FP)

• accessed with an architectural register number

• produces a physical register number

• source operands refer to the latest defined destination register, i.e.,
the current mappings

• a destination register is assigned a new physical register number
from a free register list (separate, for integer & FP)

Winter 2006 CSE 548 - R10000 Register
Renaming

8

An Implementation (R10000)

Instruction “queues” (integer, FP & data transfer)

• contains decoded & mapped instructions with the current
physical register mappings

• instructions entered into free locations in the IQ

• sit there until they are dispatched to functional units

• somewhat analogous to Tomasulo reservation stations
without value fields or valid bits

• used to determine when operands are available

• compare each source operand of instructions in the IQ
to destination values just computed

• determines when an appropriate functional unit is available

• dispatches instructions to functional units

5

Winter 2006 CSE 548 - R10000 Register
Renaming

9

An Implementation (R10000)

active list for all uncommitted instructions
• the mechanism for maintaining precise interrupts

• instructions entered in program-generated order
• allows instructions to complete in program-generated order

• instructions removed from the active list when:
• an instruction commits:

• the instruction has completed execution
• all instructions ahead of it have also completed

• branch is mispredicted
• an exception occurs

• contains the previous architectural-to-physical destination register
mapping

• used to recreate the map table for instruction restart after an
exception

• instructions in the other hardware structures & the functional units
are identified by their active list location

Winter 2006 CSE 548 - R10000 Register
Renaming

10

An Implementation (R10000)

busy-register table (integer & FP):

• indicates whether a physical register contains a value

• somewhat analogous to Tomasulo’s register status

• used to determine operand availability

• bit is set when a register is mapped & leaves the free list (not
available yet)

• cleared when a FU writes the register (now there’s a value)

6

Winter 2006 CSE 548 - R10000 Register
Renaming

11

64 64

Winter 2006 CSE 548 - R10000 Register
Renaming

12

R10000 Die Photo

7

Winter 2006 CSE 548 - R10000 Register
Renaming

13

The R10000 in Action 1

Winter 2006 CSE 548 - R10000 Register
Renaming

14

The R10000 in Action 2

8

Winter 2006 CSE 548 - R10000 Register
Renaming

15

The R10000 in Action 3

Winter 2006 CSE 548 - R10000 Register
Renaming

16

The R10000 in Action 4

9

Winter 2006 CSE 548 - R10000 Register
Renaming

17

The R10000 in Action 5

Winter 2006 CSE 548 - R10000 Register
Renaming

18

The R10000 in Action 5 : Interrupts 1

10

Winter 2006 CSE 548 - R10000 Register
Renaming

19

The R10000 in Action: Interrupts 2

Winter 2006 CSE 548 - R10000 Register
Renaming

20

The R10000 in Action: Interrupts 3

11

Winter 2006 CSE 548 - R10000 Register
Renaming

21

The R10000 in Action: Interrupts 4

Winter 2006 CSE 548 - R10000 Register
Renaming

22

R10000 Execution

In-order issue (have already fetched instructions)
• rename architectural registers to physical registers via a map table
• detect structural hazards for instruction queues (integer, memory &

FP) & active list
• issue up to 4 instructions to the instruction queues

Out-of-order execution (to increase ILP)
• reservation-station-like instruction queues that indicate when an

operand has been calculated
• each instruction monitors the setting of the busy-register table

• set busy-register table entry for the destination register
• detect functional unit structural & RAW hazards
• dispatch instructions to functional units

In-order commit (to preserve precise interrupts)
• this & previous program-generated instructions have completed
• physical register in previous mapping returned to free list
• rollback on interrupts

