
1

Spring 2006 CSE 471 - Multiple Instruction Width 1

Multiple Instruction Issue

Multiple instructions issued each cycle
• a processor that can execute more than one instruction per cycle
• issue width = the number of issue slots, 1 slot/instruction
• not all types of instructions can be issued together

• an example: 2 ALUs, 1 load/store unit, 1 FPU
1 ALU does shifts & integer multiplies; the other

executes branches
Motivation:
⇒ better performance

• increase instruction throughput
• decrease in CPI (below 1)

Cost:
⇒ greater hardware complexity, potentially longer wire lengths
⇒ harder code scheduling job for the compiler

Spring 2006 CSE 471 - Multiple Instruction Width 2

Superscalars

Require:
• instruction fetch

• fetching of multiple instructions at once
• dynamic branch prediction & fetching speculatively beyond

conditional branches
• instruction issue

• methods for determining which instructions can be issued next
• the ability to issue multiple instructions in parallel

• instruction commit
• methods for committing several instructions in fetch order

• duplicate & more complex hardware

2

Spring 2006 CSE 471 - Multiple Instruction Width 3

2-way Superscalar

Spring 2006 CSE 471 - Multiple Instruction Width 4

Multiple Instruction Issue

Superscalar processors
• instructions are scheduled for execution by the hardware
• different numbers of instructions may be issued simultaneously

VLIW (“very long instruction word”) processors
• instructions are scheduled for execution by the compiler
• a fixed number of operations are formatted as one big instruction
• usually LIW (3 operations) today

3

Spring 2006 CSE 471 - Multiple Instruction Width 5

In-order vs. Out-of-order Execution

In-order instruction execution
• instructions are fetched, executed & committed in compiler-

generated order
• if one instruction stalls, all instructions behind it stall

• instructions are statically scheduled by the hardware
• scheduled in compiler-generated order
• how many of the next n instructions can be issued, where n is

the superscalar issue width
• superscalars can have structural & data hazards within

the n instructions
• advantage of in-order instruction scheduling: simpler

implementation
faster clock cycle
fewer transistors
faster design/development/debug time

Spring 2006 CSE 471 - Multiple Instruction Width 6

In-order vs. Out-of-order Execution

Out-of-order instruction execution
• instructions are fetched in compiler-generated order
• instruction completion may be in-order (today) or out-of-order (older

computers)
• in between they may be executed in some other order
• instructions are dynamically scheduled by the hardware

• hardware decides in what order instructions can be executed
• instructions behind a stalled instruction can pass it

• advantages: higher performance
• better at hiding latencies, less processor stalling
• higher utilization of functional units

4

Spring 2006 CSE 471 - Multiple Instruction Width 7

In-order instruction issue: Alpha 21164

2 styles of static instruction scheduling
• dispatch buffer & instruction slotting (Alpha 21164)
• shift register model (UltraSPARC-1)

Spring 2006 CSE 471 - Multiple Instruction Width 8

In-order instruction issue: Alpha 21164

Instruction slotting
• can issue up to 4 instructions

• completely empty the instruction buffer before fill it again
• compiler can pad with nops so a conflicting instructions are

issued with the following instructions, not alone
• no data dependences in same issue cycle (some exceptions)

• hardware to:
• detect data hazards
• control bypass logic

5

Spring 2006 CSE 471 - Multiple Instruction Width 9

21164 Instruction Unit Pipeline

Fetch & issue
S0: instruction fetch

branch prediction bits read
S1: opcode decode

target address calculation
if predict taken, redirect the fetch

S2: instruction slotting: decide which of the next 4 instructions can
be issued
• intra-cycle structural hazard check
• intra-cycle data hazard check

S3: instruction dispatch
• inter-cycle load-use hazard check
• register read

Spring 2006 CSE 471 - Multiple Instruction Width 10

21164 Integer Pipeline
Execute (2 integer pipelines)

S4: integer execution
effective address calculation

S5: conditional move & branch execution
data cache access

S6: register write

also a 9-stage FP pipeline

6

Spring 2006 CSE 471 - Multiple Instruction Width 11

Spring 2006 CSE 471 - Multiple Instruction Width 12

In-order instruction issue: UltraSparc 1

Shift register model
• can issue up to 4 instructions per cycle
• shift in new instructions after every group of instructions is issued
• some data dependent instructions can issue in same cycle

7

Spring 2006 CSE 471 - Multiple Instruction Width 13

UltraSPARC 1

Spring 2006 CSE 471 - Multiple Instruction Width 14

8

Spring 2006 CSE 471 - Multiple Instruction Width 15

Superscalars

Performance impact:
• increase performance because execute multiple instructions in

parallel, not just overlapped
• CPI potentially < 1 (.5 on our R3000 example)
• IPC (instructions/cycle) potentially > 1 (2 on our R3000 example)
• better functional unit utilization

but
• need to fetch more instructions − how many?
• need independent instructions − why?
• need a good local mix of instructions − why?
• need more instructions to hide load delays − why?
• need to make better branch predictions − why?

Spring 2006 CSE 471 - Multiple Instruction Width 16

Code Scheduling on Superscalars

Original code
Loop: lw R1, 0(R5)

addu R1, R1, R6

sw R1, 0(R5)

addi R5, R5, -4

bne R5, R0, Loop

9

Spring 2006 CSE 471 - Multiple Instruction Width 17

Code Scheduling on Superscalars

ALU/branch instructions memory instructions clock cycle

Loop: 1

2

3

4

With latency-hiding code scheduling
Loop: lw R1, 0(s1)

addi R5, R5, -4

addu R1, R1, R6

sw R1, 4(R5)

bne R5, $0, Loop

Original code
Loop: lw R1, 0(R5)

addu R1, R1, R6

sw R1, 0(R5)

addi R5, R5, -4

bne R5, R0, Loop

Spring 2006 CSE 471 - Multiple Instruction Width 18

Code Scheduling on Superscalars: Loop Unrolling

What is the cycles per iteration?
What is the IPC?
Loop unrolling provides:

+ fewer instructions that cause hazards (I.e., branches)
+ more independent instructions (from different iterations) & therefore

increased instruction throughput
- increases register pressure
- must change offsets

ALU/branch instruction Data transfer instruction clock cycle
Loop: addi R5, R5, -16 lw R1, 0(R5) 1

lw R2, 12(R5) 2
addu R1, R1, R6 lw R3, 8(R5) 3
addu R2, R2, R6 lw R4, 4(R5) 4
addu R3, R3, R6 sw R1, 16(R5) 5
addu R4, R4, R6 sw R2, 12(R5) 6

sw R3, 8(R5) 7
bne R5, R0, Loop sw R4, 4(R5) 8

10

Spring 2006 CSE 471 - Multiple Instruction Width 19

Superscalars

Hardware impact:
• more & pipelined functional units
• multi-ported registers for multiple register access
• more buses from the register file to the additional functional units
• multiple decoders
• more hazard detection logic
• more bypass logic
• wider instruction fetch
• multi-banked L1 data cache

or else the processor has structural hazards (due to an unbalanced
design) and stalling

There are restrictions on instruction types that can be issued together to
reduce the amount of hardware.

Static (compiler) scheduling helps.

Spring 2006 CSE 471 - Multiple Instruction Width 20

Modern Superscalars

Alpha 21364: 4 instructions
Pentium IV: 5 RISClike operations dispatched to functional units
R12000: 4 instructions
UltraSPARC-3: 6 instructions dispatched

	Multiple Instruction Issue
	Superscalars
	2-way Superscalar
	Multiple Instruction Issue
	In-order vs. Out-of-order Execution
	In-order vs. Out-of-order Execution
	In-order instruction issue: Alpha 21164
	In-order instruction issue: Alpha 21164
	21164 Instruction Unit Pipeline
	21164 Integer Pipeline
	
	In-order instruction issue: UltraSparc 1
	UltraSPARC 1
	Superscalars
	Code Scheduling on Superscalars
	Code Scheduling on Superscalars
	Code Scheduling on Superscalars: Loop Unrolling
	Superscalars
	Modern Superscalars

