Issues in Multiprocessors

Which programming model for interprocessor communication
+ shared memory
+ regular loads & stores

+ SPARCCenter, SGI Challenge, Cray T3D, Convex Exemplar,

KSR-1&2
* message passing
- explicit sends & receives
+ TMC CM-5, Intel Paragon, IBM SP-2

Which execution model
« control parallel
« identify & synchronize different asynchronous threads
+ data parallel
« same operation on different parts of the shared data space

Spring 2006 CSE 471 - Multiprocessors

Issues in Multiprocessors

How to get good parallel performance
+ recognize parallelism

+ transform programs to increase parallelism without decreasing
processor locality

+ decrease sharing costs

Spring 2006 CSE 471 - Multiprocessors
J’?E;us
Connection Machine
Parallel Processor Unit
Connection Machine Connection Machine Front end 1
16.384processors 16,384 processors (086 vax or
Symbolics)
™ squence: [sequence b
o 3
I Pl Y] Front end 2
(oec vax or |4
. [2 [M Symbolics)
L{Bus intertace
Connection Machine Connection Machine
16.384 processors 16,384 processors
| Frontend 3
DEC VAX oF
1 | — o s
[comemonmemmiosmen | o
I I
Data Data Data Graphic !
Vault Vault vautt Display Network |
Figure 1. Connection Machine system organization.
Spring 2006 CSE 471 - Multiprocessors

Issues in Multiprocessors

How to express parallelism
+ language support
« HPF, ZPL
* runtime library constructs
+ coarse-grain, explicitly parallel C programs
- automatic (compiler) detection

« implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS

compilers

Application development
» embarrassingly parallel programs could be easily parallelized
+ development of different algorithms for same problem

Spring 2006 CSE 471 - Multiprocessors

Flynn Classification

SISD: single instruction stream, single data stream
single-context uniprocessors

SIMD: single instruction stream, multiple data streams
exploits data parallelism
example: Thinking Machines CM

MISD: multiple instruction streams, single data stream
systolic arrays
example: Intel iWarp, streaming processors

MIMD: multiple instruction streams, multiple data streams
multiprocessors

multithreaded processors

parallel programming & multiprogramming

relies on control parallelism: execute & synchronize different
asynchronous threads of control

+ example: most processor companies have MP configurations
Spring 2006 CSE 471 - Multiprocessors

Systolic Array

P

[Tour oA l lop = 1ad <
e | T o °r S

L¥ : T

. ‘ Prond =6
[Cecanl e

gﬁ_& Jl A dl‘i

Spring 2006 CSE 471 - Multiprocessors

Low-end
+ bus-based
« simple, but a bottleneck
+ simple cache coherency protocol
+ physically centralized memory
+ uniform memory access (UMA machine)

+ Sequent Symmetry, SPARCCenter, Alpha-, PowerPC- or SPARC-
based servers

Spring 2006 CSE 471 - Multiprocessors 7

High-end
+ higher bandwidth, multiple-path interconnect
+ more scalable
+ more complex cache coherency protocol (if shared memory)
+ longer latencies
physically distributed memory
+ non-uniform memory access (NUMA machine)

+ could have processor clusters

+ SGl Challenge, Convex Examplar, Cray T3D, IBM SP-2, Intel
Paragon

Spring 2006 CSE 471 - Multiprocessors 9

Comparison of Issue Capabilities

Single-chip

Superscalar 1 Multip sor

horizontal waste
Issue Issue slots

-s> mEEm

Low-end MP
One or One or One or One or
more levels more levels more levels more levels
of cache of cache of cache of cache

i DoOO Ooog
: EHECO EEEN
: mOog HOED
5 ooog Qoo
: EEEE ERO0
l ooog HEEN
(1] oooo
(I EECOO
/ I Thread1 I Thread 4
Il Thread2
vertical waste I Thread 3
Spring 2006 CSE 471 - Multiprocessors 11

1/0 System

Main memory

Spring 2006 CSE 471 - Multiprocessors 8

High-end MP

or\ ﬂmu ‘m) ("Hn,\‘y(\} ’roce ‘m“‘
he \\: cache \\ cache \ cache //'

.

e 7)) [H70)
!

‘Intépéonnéction Network

// ya
\ /
\ Processon ({, (Processo
/ rcache / \! uul\y \+ cache

) [o{0) [(0] proenp{0)

Spring 2006 CSE 471 - Multiprocessors 10

Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model
« global shared address space
+ not worry about data locality but
get better performance when program for data placement
lower latency when data is local

« butcan do data placement if it is crucial, but don’t
have to

 hardware maintains data coherence
- synchronize to order processor’s accesses to shared data
« like uniprocessor code so parallelizing by programmer or
compiler is easier
= can focus on program semantics, not interprocessor
communication

Spring 2006 CSE 471 - Multiprocessors 12

Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software) but
overlap of communication & computation

latency-hiding techniques can be applied to message passing
machines

+ higher bandwidth for small transfers but
usually the only choice

Spring 2006 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Why there was a debate
+ little experimental data
» not separate implementation from programming model
+ can emulate one paradigm with the other

* MP on SM machine
message buffers in local (to each processor) memory
copy messages by Id/st between buffers
+ SM on MP machine
Id/st becomes a message copy
sloooooooooow

Who won?

Spring 2006 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

more complex programming model

additional language constructs

need to program for nearest neighbor communication
+ no coherency hardware
+ good throughput on large transfers but

what about small transfers?

+ more scalable (memory latency doesn’t scale with the number of
processors) but

large-scale SM has distributed memory also
« hah!so you're going to adopt the message-passing
model?

13 Spring 2006 CSE 471 - Multiprocessors 14

