
Spring 2006 CSE 471 - Multiprocessors 1

Issues in Multiprocessors

Which programming model for interprocessor communication

• shared memory

• regular loads & stores

• SPARCCenter, SGI Challenge, Cray T3D, Convex Exemplar,
KSR-1&2

• message passing

• explicit sends & receives

• TMC CM-5, Intel Paragon, IBM SP-2

Which execution model

• control parallel

• identify & synchronize different asynchronous threads

• data parallel

• same operation on different parts of the shared data space

Spring 2006 CSE 471 - Multiprocessors 2

Issues in Multiprocessors

How to express parallelism

• language support

• HPF, ZPL

• runtime library constructs

• coarse-grain, explicitly parallel C programs

• automatic (compiler) detection

• implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS
compilers

Application development

• embarrassingly parallel programs could be easily parallelized

• development of different algorithms for same problem

Spring 2006 CSE 471 - Multiprocessors 3

Issues in Multiprocessors

How to get good parallel performance

• recognize parallelism

• transform programs to increase parallelism without decreasing

processor locality

• decrease sharing costs

Spring 2006 CSE 471 - Multiprocessors 4

Flynn Classification

SISD: single instruction stream, single data stream

• single-context uniprocessors

SIMD: single instruction stream, multiple data streams

• exploits data parallelism

• example: Thinking Machines CM

MISD: multiple instruction streams, single data stream

• systolic arrays

• example: Intel iWarp, streaming processors

MIMD: multiple instruction streams, multiple data streams

• multiprocessors

• multithreaded processors

• parallel programming & multiprogramming

• relies on control parallelism: execute & synchronize different
asynchronous threads of control

• example: most processor companies have MP configurations

Spring 2006 CSE 471 - Multiprocessors 5

CM-1

Spring 2006 CSE 471 - Multiprocessors 6

Systolic Array



Spring 2006 CSE 471 - Multiprocessors 7

MIMD

Low-end

• bus-based

• simple, but a bottleneck

• simple cache coherency protocol

• physically centralized memory

• uniform memory access (UMA machine)

• Sequent Symmetry, SPARCCenter, Alpha-, PowerPC- or SPARC-

based servers

Spring 2006 CSE 471 - Multiprocessors 8

Low-end MP

Spring 2006 CSE 471 - Multiprocessors 9

MIMD

High-end

• higher bandwidth, multiple-path interconnect

• more scalable

• more complex cache coherency protocol (if shared memory)

• longer latencies

• physically distributed memory

• non-uniform memory access (NUMA machine)

• could have processor clusters

• SGI Challenge, Convex Examplar, Cray T3D, IBM SP-2, Intel

Paragon

Spring 2006 CSE 471 - Multiprocessors 10

High-end MP

Spring 2006 CSE 471 - Multiprocessors 11

Comparison of Issue Capabilities

Spring 2006 CSE 471 - Multiprocessors 12

Shared Memory vs. Message Passing

Shared memory

+ simple parallel programming model

• global shared address space

• not worry about data locality but

get better performance when program for data placement

lower latency when data is local

• but can do data placement if it is crucial, but don!t
have to

• hardware maintains data coherence

• synchronize to order processor!s accesses to shared data

• like uniprocessor code so parallelizing by programmer or
compiler is easier

! can focus on program semantics, not interprocessor
communication



Spring 2006 CSE 471 - Multiprocessors 13

Shared Memory vs. Message Passing

Shared memory

+ low latency (no message passing software) but

overlap of communication & computation

latency-hiding techniques can be applied to message passing
machines

+ higher bandwidth for small transfers but

usually the only choice

Spring 2006 CSE 471 - Multiprocessors 14

Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

more complex programming model

additional language constructs

need to program for nearest neighbor communication

+ no coherency hardware

+ good throughput on large transfers but

what about small transfers?

+ more scalable (memory latency doesn!t scale with the number of
processors) but

large-scale SM has distributed memory also

• hah! so you!re going to adopt the message-passing
model?

Spring 2006 CSE 471 - Multiprocessors 15

Shared Memory vs. Message Passing

Why there was a debate

• little experimental data

• not separate implementation from programming model

• can emulate one paradigm with the other

• MP on SM machine

message buffers in local (to each processor) memory

copy messages by ld/st between buffers

• SM on MP machine

ld/st becomes a message copy

sloooooooooow

Who won?


