Issues in Multiprocessors

Which programming model for interprocessor communication
+ shared memory
+ regular loads & stores

+ SPARCCenter, SGI Challenge, Cray T3D, Convex Exemplar,

KSR-1&2
* message passing
- explicit sends & receives
+ TMC CM-5, Intel Paragon, IBM SP-2

Which execution model
« control parallel
« identify & synchronize different asynchronous threads
+ data parallel
« same operation on different parts of the shared data space
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Issues in Multiprocessors

How to get good parallel performance
+ recognize parallelism

+ transform programs to increase parallelism without decreasing
processor locality

+ decrease sharing costs
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Figure 1. Connection Machine system organization.
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Issues in Multiprocessors

How to express parallelism
+ language support
« HPF, ZPL
* runtime library constructs
+ coarse-grain, explicitly parallel C programs
- automatic (compiler) detection

« implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS

compilers

Application development
» embarrassingly parallel programs could be easily parallelized
+ development of different algorithms for same problem
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Flynn Classification

SISD: single instruction stream, single data stream
single-context uniprocessors

SIMD: single instruction stream, multiple data streams
exploits data parallelism
example: Thinking Machines CM

MISD: multiple instruction streams, single data stream
systolic arrays
example: Intel iWarp, streaming processors

MIMD: multiple instruction streams, multiple data streams
multiprocessors

multithreaded processors

parallel programming & multiprogramming

relies on control parallelism: execute & synchronize different
asynchronous threads of control

+ example: most processor companies have MP configurations
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Low-end
+ bus-based
« simple, but a bottleneck
+ simple cache coherency protocol
+ physically centralized memory
+ uniform memory access (UMA machine)

+ Sequent Symmetry, SPARCCenter, Alpha-, PowerPC- or SPARC-
based servers

Spring 2006 CSE 471 - Multiprocessors 7

High-end
+ higher bandwidth, multiple-path interconnect
+ more scalable
+ more complex cache coherency protocol (if shared memory)
+ longer latencies
physically distributed memory
+ non-uniform memory access (NUMA machine)

+ could have processor clusters

+ SGl Challenge, Convex Examplar, Cray T3D, IBM SP-2, Intel
Paragon
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Comparison of Issue Capabilities
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1/0 System

Main memory
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High-end MP
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Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model
« global shared address space
+ not worry about data locality but
get better performance when program for data placement
lower latency when data is local

« butcan do data placement if it is crucial, but don’t
have to

 hardware maintains data coherence
- synchronize to order processor’s accesses to shared data
« like uniprocessor code so parallelizing by programmer or
compiler is easier
= can focus on program semantics, not interprocessor
communication
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Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software) but
overlap of communication & computation

latency-hiding techniques can be applied to message passing
machines

+ higher bandwidth for small transfers but
usually the only choice
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Shared Memory vs. Message Passing

Why there was a debate
+ little experimental data
» not separate implementation from programming model
+ can emulate one paradigm with the other

* MP on SM machine
message buffers in local (to each processor) memory
copy messages by Id/st between buffers
+ SM on MP machine
Id/st becomes a message copy
sloooooooooow

Who won?
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Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

more complex programming model

additional language constructs

need to program for nearest neighbor communication
+ no coherency hardware
+ good throughput on large transfers but

what about small transfers?

+ more scalable (memory latency doesn’t scale with the number of
processors) but

large-scale SM has distributed memory also
« hah!so you're going to adopt the message-passing
model?
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