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Introduction

Why memory subsystem design is important

• CPU speeds increase 25%-30% per year

• DRAM speeds increase 2%-11% per year
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Memory Hierarchy

Levels of memory with different sizes & speeds

• close to the CPU: small, fast access

• close to memory: large, slow access

Memory hierarchies improve performance

• caches: demand-driven storage

• principal of locality of reference

temporal: a referenced word will be referenced again soon

spatial: words near a reference word will be referenced soon

• speed/size trade-off in technology

! fast access for most references

First Cache: IBM 360/85 in the late !60s
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Cache Organization

Block:

• # bytes associated with 1 tag

• usually the # bytes transferred on a memory request

Set: the blocks that can be accessed with the same index bits

Associativity: the number of blocks in a set

• direct mapped

• set associative

• fully associative

Size: # bytes of data

How do you calculate this?
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Logical Diagram of a Cache
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Logical Diagram of a Set-associative Cache
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Accessing a Cache

General formulas

• number of index bits = log2(cache size / block size)

(for a direct mapped cache)

• number of index bits = log2(cache size /( block size * associativity))

(for a set-associative cache)
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Design Tradeoffs

Cache size

the bigger the cache,

+ the higher the hit ratio

-  the longer the access time
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Design Tradeoffs

Block size

the bigger the block,

+ the better the spatial locality

+ less block transfer overhead/block

+ less tag overhead/entry (assuming same number of entries)

-  might not access all the bytes in the block
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Design Tradeoffs

Associativity

the larger the associativity,

+ the higher the hit ratio

-  the larger the hardware cost (comparator/set)

-  the longer the hit time (a larger MUX)

-  need hardware that decides which block to replace

-  increase in tag bits (if same size cache)

Associativity is more important for small caches than large

because more memory locations map to the same line

e.g., TLBs!
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Design Tradeoffs

Memory update policy

• write-through

• performance depends on the # of writes

• store buffer decreases this

• check on load misses

• store compression

• write-back

• performance depends on the # of dirty block replacements

but...

• dirty bit & logic for checking it

• tag check before the write

• must flush the cache before I/O

• optimization: fetch before replace

• both use a merging store buffer
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Design Tradeoffs

Cache contents

• separate instruction & data caches

• separate access ! double the bandwidth

• shorter access time

• different configurations for I & D

• unified cache

• lower miss rate

• less cache controller hardware
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Address Translation

In a nutshell:

• maps a virtual address to a physical address, using the page tables

• number of page offset bits = page size
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TLB

Translation Lookaside Buffer (TLB):

• cache of most recently translated virtual-to-physical page mappings

• typical configuration

• 64/128-entry

• fully associative

• 4-8 byte blocks

• .5 -1 cycle hit time

• low tens of cycles miss penalty

• misses can be handled in software, software with hardware assists,
firmware or hardware

• write-back

• works because of locality of reference

• much faster than address translation using the page tables
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Using a TLB

(1)  Access a TLB using the virtual page number.

(2)  If a hit,

concatenate the physical page number & the page offset bits, to form

a physical address;

set the reference bit;

if writing, set the dirty bit.

(3)  If a miss,

get the physical address from the page table;

evict a TLB entry & update dirty/reference bits in the page table;

update the TLB with the new mapping.
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Design Tradeoffs

Virtual or physical addressing

Virtually-addressed caches:

• access with a virtual address (index & tag)

• do address translation on a cache miss

+   faster for hits because no address translation

+   compiler support for better data placement
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Design Tradeoffs

Virtually-addressed caches:

-    need to flush the cache on a context switch

• process identification (PID) can avoid this

-    synonyms

•  “the synonym problem”

• if 2 processes are sharing data, two (different) virtual
addresses map to the same physical address

• 2 copies of the same data in the cache

• on a write, only one will be updated; so the other has old data

• a solution: page coloring

• processes share segments;  all shared data have the same
offset from the beginning of a segment, i.e., the same low-
order bits

• cache must be <= the segment size
(more precisely, each set of the cache must be <= the
segment size)

• index taken from segment offset, tag compare on segment #
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Design Tradeoffs

Virtual or physical addressing

Physically-addressed caches

• do address translation on every cache access

• access with a physical index & compare with physical tag

+   no cache flushing on a context switch

+   no synonym problem
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Design Tradeoffs

Physically-addressed caches

-   if a straightforward implementation, hit time increases because must
translate the virtual address before access the cache

+  increase in hit time can be avoided if address translation is done in
parallel with the cache access

• restrict cache size so that cache index bits are in the page
offset (virtual & physical bits are the same): virtually indexed

• access the TLB & cache at the same time

• compare the physical tag from the cache to the physical
address (page frame #) from the TLB: physically tagged

• can increase cache size by increasing associativity, but still use
page offset bits for the index
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Cache Hierarchies

Cache hierarchy

• different caches with different sizes & access times & purposes

+  decrease effective memory access time:

• many misses in the L1 cache will be satisfied by the L2 cache

• avoid going all the way to memory
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Cache Hierarchies

Level 1 cache goal: fast access

so minimize hit time (the common case)
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Cache Hierarchies

Level 2 cache goal: keep traffic off the system bus
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Cache Metrics

Hit (miss) ratio =

• measures how well the cache functions

• useful for understanding cache behavior relative to the number of
references

• intermediate metric

Effective access time =

• (rough) average time it takes to do a memory reference

• performance of the memory system, including factors that depend on the
implementation

• intermediate metric
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Measuring Cache Hierarchy Performance

Effective Access Time for a cache hierarchy:...
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Local Miss Ratio:

• # accesses for the L1 cache: the number of references

• # accesses for the L2 cache: the number of misses in the L1 cache

Example:   1000 references

    40 L1 misses

    10 L2 misses

local MR (L1):

local MR (L2):

Measuring Cache Hierarchy Performance
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Measuring Cache Hierarchy Performance

Global Miss Ratio:

Example:    1000 References

     40 L1 misses

     10 L2 misses

global MR (L1):

global MR (L2):
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Miss Classification

Usefulness is in providing insight into the causes of misses

• does not explain what caused a particular, individual miss

Compulsory

• first reference misses

• decrease by increasing block size

Capacity

• due to finite size of the cache

• decrease by increasing cache size

Conflict

• too many blocks map to the same set

• decrease by increasing associativity

Coherence (invalidation)

• decrease by decreasing block size + improving processor locality


