
Spring 2006 CSE 471 - Advanced Caching

Techniques

1

Advanced Caching Techniques

Approaches to improving memory system performance

• eliminate memory operations

• decrease the number of misses

• decrease the miss penalty

• decrease the cache/memory access times

• hide memory latencies

• increase cache throughput

• increase memory bandwidth

Spring 2006 CSE 471 - Advanced Caching

Techniques

2

Handling a Cache Miss the Old Way

(1) Send the address & read operation to the next level of the hierarchy

(2) Wait for the data to arrive

(3) Update the cache entry with data*, rewrite the tag, turn the valid bit on, clear
the dirty bit (if data cache)

(4) Resend the memory address; this time there will be a hit.

* There are variations:

• get data before replace the block

• send the requested word to the CPU as soon as it arrives at the cache
(early restart)

• requested word is sent from memory first; then the rest of the block
follows (requested word first)

How do the variations improve memory system performance?

Spring 2006 CSE 471 - Advanced Caching

Techniques

3

Non-blocking Caches

Non-blocking cache (lockup-free cache)

• allows the CPU to continue executing instructions while a miss is

handled

• some processors allow only 1 outstanding miss (“hit under miss”)

• some processors allow multiple misses outstanding (“miss under miss”)

• miss status holding registers (MSHR)

• hardware structure for tracking outstanding misses

• physical address of the block

• which word in the block

• destination register number (if data)

• mechanism to merge requests to the same block

• mechanism to insure accesses to the same location execute in

program order

Spring 2006 CSE 471 - Advanced Caching

Techniques

4

Non-blocking Caches

Non-blocking cache (lockup-free cache)

• can be used with both in-order and out-of-order processors

• in-order processors stall when an instruction that uses the load

data is the next instruction to be executed

• out-of-order processors can execute instructions after the load

consumer

How do non-blocking caches improve memory system performance?

Spring 2006 CSE 471 - Advanced Caching

Techniques

5

Victim Cache

Victim cache

• small fully-associative cache

• contains the most recently replaced blocks of a direct-mapped

cache

• check it on a cache miss

• swap the direct-mapped block and victim cache block

• alternative to 2-way set-associative cache

How do victim caches improve memory system performance?

Why do victim caches work?

Spring 2006 CSE 471 - Advanced Caching

Techniques

6

Sub-block Placement

Divide a block into sub-blocks

• sub-block = unit of transfer on a cache miss

• valid bit/sub-block

• misses:

• block-level miss: tags didn!t match

• sub-block-level miss: tags matched, valid bit was clear

+ the transfer time of a sub-block

+ fewer tags than if each block was the size of a block

- less implicit prefetching

How does sub-block placement improve memory system performance?

tag I data V data V data I data
tag I data V data V data V data
tag V data V data V data V data
tag I data I data I data I data

Spring 2006 CSE 471 - Advanced Caching

Techniques

7

Pseudo-set associative Cache

Pseudo-set associative cache

• access the cache

• if miss, invert the high-order index bit & access the cache again

+ miss rate of 2-way set associative cache

+ access time of direct-mapped cache if hit in the “fast-hit block”

- increase in hit time (relative to 2-way associative) if always hit in the

“slow-hit block”

• predict which is the fast-hit block

How does pseudo-set associativity improve memory system performance?

Spring 2006 CSE 471 - Advanced Caching

Techniques

8

Pipelined Cache Access

Pipelined cache access

• simple 2-stage pipeline

• access the cache

• data transfer back to CPU

• tag check & hit/miss logic with the shorter of the two stages

How do pipelined caches improve memory system performance?

Spring 2006 CSE 471 - Advanced Caching

Techniques

9

Mechanisms for Prefetching

Stream buffers

• where prefetched instructions/data held

• if requested block in the stream buffer, then cancel the cache access

How do improve memory system performance?

Spring 2006 CSE 471 - Advanced Caching

Techniques

10

Trace Cache

Trace cache contents

• contains instructions from the dynamic instruction stream

+ fetch statically noncontiguous instructions in a single cycle

+ a more efficient use of “I-cache” space

• trace is analogous to a cache block wrt accessing

Spring 2006 CSE 471 - Advanced Caching

Techniques

11

Trace Cache

Assessing a trace cache

• trace cache state includes low bits of next addresses (target & fall-

through code) for the last instruction in the currently executing trace,

which is a branch

• trace cache tag is high branch address bits + predictions for all

branches in the trace

• assess trace cache & branch predictor, BTB, I-cache in parallel

• compare high PC bits & prediction history of the current branch

instruction to the trace cache tag

• hit: use trace cache & I-cache fetch ignored

• miss: use the I-cache

 start constructing a new trace

Why does a trace cache work?

Spring 2006 CSE 471 - Advanced Caching

Techniques

12

Trace Cache

Effect on performance?

Spring 2006 CSE 471 - Advanced Caching

Techniques

13

Cache-friendly Compiler Optimizations

Exploit spatial locality

• schedule for array misses

• hoist first load to each cache block

Improve spatial locality

• group & transpose

• makes portions of vectors that are accessed together lie in memory
together

• loop interchange

• so inner loop follows memory layout

Improve temporal locality

• loop fusion

• do multiple computations on the same portion of an array

• tiling (also called blocking)

• do all computation on a small block of memory that will fit in the
cache

Spring 2006 CSE 471 - Advanced Caching

Techniques

14

Tiling Example

/* before */

for (i=0; i<n; i=i+1)
for (j=0; j<n; j=j+1){

r = 0;
for (k=0; k<n; k=k+1) {

r = r + y[i,k] * z[k,j]; }
x[i,j] = r;
};

/* after */

for (jj=0; jj<n; jj=jj+T)

for (kk=0; kk<n; kk=kk+T)

for (i=0; i<n; i=i+1)
for (j=jj; j<min(jj+T-1,n); j=j+1) {

r = 0;
for (k=kk; k<min(kk+T-1,n); k=k+1)

{r = r + y[i,k] * z[k,j]; }
x[i,j] = x[i,j] + r;
};

Spring 2006 CSE 471 - Advanced Caching

Techniques

15

Memory Banks

Interleaved memory:

• multiple memory banks

• word locations are assigned across banks

• interleaving factor: number of banks

• send a single address to all banks at once

Spring 2006 CSE 471 - Advanced Caching

Techniques

16

Memory Banks

Interleaved memory:

+ get more data for one transfer

• data is probably used (why?)

- larger DRAM chip capacity means fewer banks

- power issue

Effect on performance?

Spring 2006 CSE 471 - Advanced Caching

Techniques

17

Memory Banks

Independent memory banks

• different banks can be accessed at once, with different addresses

• allows parallel access, possibly parallel data transfer

• multiple memory controllers & separate address lines, one for each
access

• different controllers cannot access the same bank

• less area than dual porting

Effect on performance?

Spring 2006 CSE 471 - Advanced Caching

Techniques

18

Machine Comparison

Spring 2006 CSE 471 - Advanced Caching

Techniques

19

Today!s Memory Subsystems

Look for designs in common:

Spring 2006 CSE 471 - Advanced Caching

Techniques

20

Advanced Caching Techniques

Approaches to improving memory system performance

• eliminate memory operations

• decrease the number of misses

• decrease the miss penalty

• decrease the cache/memory access times

• hide memory latencies

• increase cache throughput

• increase memory bandwidth

Spring 2006 CSE 471 - Advanced Caching

Techniques

21

Wrap-up
Victim cache (reduce miss penalty)

TLB (reduce page fault time (penalty))

Hardware or compiler-based prefetching (reduce misses)

Cache-conscious compiler optimizations (reduce misses or hide miss penalty)

Coupling a write-through memory update policy with a write buffer (eliminate
store ops/hide store latencies)

Handling the read miss before replacing a block with a write-back memory
update policy (reduce miss penalty)

Sub-block placement (reduce miss penalty)

Non-blocking caches (hide miss penalty)

Merging requests to the same cache block in a non-blocking cache (hide miss
penalty)

Requested word first or early restart (reduce miss penalty)

Cache hierarchies (reduce misses/reduce miss penalty)

Virtual caches (reduce miss penalty)

Pipelined cache accesses (increase cache throughput)

Pseudo-set associative cache (reduce misses)

Banked or interleaved memories (increase bandwidth)

Independent memory banks (hide latency)

Wider bus (increase bandwidth)

