
RSIM Introduction

Programming Model

One “process” per processor
Allocated with fork()
getpid() returns processor id

Two-part memory space
per-processor part

private heap and stack
shared heap

allocate with shmalloc()

Stack

Static/Global

Program

Heap

Unused

Shared

Unused

shared
region

private
region

(shmalloc’ed)

Processor

L1 Cache WB

L2 Cache

Network Interface

Network

Memory

Directory

Processor

L1 Cache WB

L2 Cache

Network Interface

Memory

Directory

BUS BUS

RSIM System Model Hierarchical Communication

L1 Cache

Processor

Write Buffer

L2 Cache

Reply

Cohe

Reply

Reply

Cohe Reply

Cohe

Bus Module

Send

Network

Cohe
reply

Cohe Reply Cohe Reply

reply

Cohe reply

Cohe
reply

Directory/Memory Receive

Request

Request

Request

Request

Request Request

i0o0

i0 o0

o1 i1
o2 i2

i0

i1

o0

o1

o1

i0 o0

i2 i1
i3 o3

o2

i0 i1 o1 o0

o2 o3 i4 i5

i0 i1 o1 o0 i0 i1 o0 o1

o6,8,.. o7,9,.. i7,9,.. i6,8,..

Data
Requests move down
Replies move up

Coherence
Requests move up
Replies move down

E.g., L2 receives and
handles data requests
from L1, and makes
coherence requests to
main memory/directories

Your Task

Add a 4th state
to the coherence
protocol between
the L2 cache
and main
memory!

This is the
current protocol
(summarized)

read (w/ sharers)

write

write

replacement

replacement

read

read read/write

read

(no sharers)

external

processor

Modified

Invalid Shared

Exclusive

write

(writeback

to dir)

(notify dir)

write

($ to $,

ack to dir)

write (ack to dir)

replacement

read

($ to $,

ack to dir)

read

($ to $,

copyback to dir)

write

replacement

replacement

read

read/write

external

processor

Modified

Invalid Shared

write

read

read

($ to $,

copyback to dir)
(writeback

to dir)

write

($ to $,

ack to dir)

write (ack to dir)

What to Change?
Cache line state machines described by state
transition tables

Add new state and update transition tables

L2ProcessTagReq function simulates the
interesting part of the L2 cache

L1ProcessTagReq does the same

Dir_Cohe function handles coherence
messages for the directory

Changing the State
Machines

File: src/MemSys/setup_cohe.c
Functions:

Definitely: setup_secondary_tables()
Describes L2 state machine

Maybe: setup_tables()
Describes L1 state machines

AddEntryToTable

Adds an entry to the state transition table

Tables map from (request, curr state) to
(next state, action to take on transition)

The available actions are sending messages
higher (closer to processor) or lower (closer
to main memory).

Using AddEntryToTable

AddEntryToTable(tbl, //the state machine tbl
 req, // Incoming message
 curr_state, // Current state
 next_state, // Next state
 req_mod_next, // Msg to send on
 req_mod_sz, // Size of msg
 req_mod_rep_sz, // Size of reply
 req_next, // Msg to send back
 req_next_sz, // Size of msg
 0) // Probably does nothing.

Example of
AddEntryToTable

AddEntryToTable(&Secondary_WB // L2 table
 INVL, // Invalidate the line
 SH_CL, // Currently shared
 INVALID, // Go to INVALID state
 INVL, // Send INVL to L1
 REQ_SZ, // Size of INVL
 REQ_SZ, // Size of reply from
 // L1 (in future)
 0, // No msg to dir
 0, // No msg has no size
 0) // Probably does nothing.

Another Example of
AddEntryToTable

AddEntryToTable(&Secondary_WB // L2 table
 REPL, // Replace the line
 PR_DY, // Private, dirty (M)
 INVALID, // Go to INVALID state
 WRB, // Send WRB to dir
 REQ_SZ+LINESZ, // Size of WRB
 REQ_SZ, // Size of reply from
 // dir (in future)
 COPYBACK_INVL, // Message to L1
 REQ_SZ, // Size of msg to L1
 0) // Probably does nothing.

MSHRs

Miss Status and Handling Registers

Manage all activity on a cache miss

Combine outstanding accesses to same line

Getting rsim source

/cse/courses/cse471/06sp/rsim-cse471.tar

Use “tar xvf file.tar” to extract contents of
file.tar to current working directory

This creates an rsim-cse471 subdirectory

We’ll call this directory $RSIMHOME

Building rsim

cd $RSIMHOME/obj/x86

make

If no errors, rsim is built in current
directory.

Programs in RSIM

RSIM executes “predecoded sparc binaries”

Regular sparc binary called program.out

In same directory is program.dec

Running rsim

rsim -f program -z conffile -- params to
program

conffile is as described in manual

Empty conffile uses default configuration

program is prefix of program name

e.g., “quicksort” runs “quicksort.dec”

Writing rsim programs
Make a directory for your program, say prg.

Make subdirectories, prg/src, prg/obj and
prg/execs

Write your program in C, and put the files in
the prg/src/ directory

Copy and modify /cse/courses/cse471/06sp/
rsim/apps/QS/makefile

Tools are in /cse/courses/cse471/06sp/rsim/
bin

