

CSE 471: Computer Design & Organization
Assignment 5

Due: Thursday, June 1

This assignment gives you the opportunity to design and evaluate your own cache coherency
protocol.

For this assignment you need to work in teams of two – no singletons.

Part I: Cache coherency protocol design

In class we studied a simple 3-state snooping cache coherency protocol. Although two bits are
needed to encode the coherency state in this protocol, only three of the four possible values are
used: invalid, shared, and exclusive. This begs for a coherency protocol which utilizes the fourth
value to implement a fourth state that improves multiprocessor performance in some way.

Choose (meaning dream up) a fourth state and present hypotheses that support its value, i.e., in
what situations should it improve performance; why do you think those situations will occur
often enough to make a performance difference (Amdahl’s Law applies here again); does it have
any downsides; etc. Design a finite state machine that carries out the functions of your new
protocol with the new fourth coherency state, both from the CPU and the snoop points of view.
In your report, represent this FSM as nodes and arcs like we did in class.

.
Part II: Cache coherency protocol implementation

Implement your new protocol with its fourth state. For this work you will use RSIM, a
multiprocessor simulator from Rice University that has been built to do research studies similar
to the one you are about to do. RSIM models an R10000 multiprocessor system, although it
simulates modified SUN UltraSPARC binaries. This simulator provides processor and memory
subsystem configuration parameters like SimpleScalar, as well as multiprocessor specific
parameters, such as the number of processors and control over the directory that handles cache
coherency. Andy will discuss RSIM and give you a tour through the code.

Evaluate your new protocol relative to the three-state protocol that is already implemented in
RSIM. Don’t just say the performance difference is X. Design and implement metrics that show
why one protocol is better than the other.

We have provided two programs to evaluate the protocols: QS (a multiprocessor
implementation of quicksort) and SOR (successive overrelaxation). In addition, you may need to
write small test cases to test and debug particular aspects of your protocol, to make sure they do
what they are supposed to and don’t do what they are not supposed to do. The completeness of
these tests will be a component of your project grade.

In addition to the protocol, you should implement a “global coherency state monitor” that

tracks the effects on the entire multiprocessor of changes brought about by reads and writes to
shared data. This monitor guarantees that mistakes in your protocol are caught immediately,
saving you a lifetime of debugging. I’ll explain the monitor in more detail after Andy’s RSIM
discussion. In addition to the global monitor, you should use the diagnostic output already
provided by RSIM, such as coherency traffic on the bus and changes to the cache line state, etc.

Part III: The report
Turn in the fruits of your labor in the form of a report. Andy will get in touch with you if he

wants to see your code.

