
CDC 6600























Why bother with executing out of order?

• OOO: To execute instructions in a different order than the compiler 
(or person) has specified

• If much work is contending for a limited resource, it would be nice to 
make progress on other work that did not used that resource

• e.g. bottlenecked on memory

• Instruction Level Parallelism, makes you go faster!

• Memory today has variable latency

• Code performance migratability 



Mem->Issue

• WaitFor:

• Instruction bits

• Space to issue the instruction to

• Do

• Issue it!



Issue->Dispatch

• WaitFor:

• The functional unit must be free

• The output register must be free

• Do:

• Move the instruction to the functional 
unit



Dispatch->Execute

• WaitFor:

• have the instruction has to be there

• input registers have to be valid

• Do:

• read the registers and execute!



Execute -> Complete

• WaitFor:

• execution to complete

• Do:

• post the write to the register file



Complete

• WaitFor

• Do



troubles

• DIV r1, r2 -> R3  
ADD r4,r5 -> r1  
STORE r1, @(r6)

• Four solutions:

• Solution: don’t do parallel stuff

• Completion unit

• Very carefully dispatch instructions so later instructions only get 
dispatched if they have a latency that is long enough not to modify 
architectural state before earlier instructions.

• Accept it.



What are the “I/O” “processors”?

• Accelerators for I/O

• Provided flexibility to I/O

• DMA read/write

• Asynchronous to the main CPU

• Shared main memory with the CPU

• A little micro controller 

• FGMT, Fine-grained Multithreading





Why FGMT?

• “Application level” threading

• The logic is precious, the register state, not 
so much => hence the overhead is small

• A way to deal with long latency operations

• Circuit world variation: C-slow retiming


