Pipelining

Readings: 4.5-4.8

Example: Doing the laundry

Ann, Brian, Cathy, & Dave @@@

each have one load of clothes to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 40 minutes
()
()

“Folder” takes 20 minutes qF

X 0 O

= ® Q=0

| (D gcL

Sequential Laundry
6PM 7 8 9 10 11 Midnight

I Time

30 40 |2_0|30|40 |2_0|30|40 |2_0|30|40 |2_0|

a =
Top4
© = al

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

X 0 O -

= O Q-0

(D g

Pipelined Laundry: Start work ASAP

Midnight

6 PM 7 8 9 10 11
I Time
— — =

40 40 40 40 20
% I
® [i
e BEL

Pipelined laundry takes 3.5 hours for 4 loads

Pipelining Lessons

X 0 O -

= O Q-0

6PM 7 8

Pipelining doesn’t help latency of
9 single task, it helps throughput
of entire workload

e
® o

Time

B s

Pipeline rate limited by slowest

|— |— |— |—| pipeline stage
40 40 40 40 20 Multiple tasks operating

simultaneously using different
resources

Potential speedup = Number pipe
stages

Unbalanced lengths of pipe stages
reduces speedup

Time to “fill” pipeline and time to

& e

o “drain” it reduces speedup
L 7- Stall for Dependences

Pipelined Execution

Now we just have to make it work

Time
|IFetch |Dcd Exec [Mem |WB
IFetch |Dcd Exec [|Mem WB
IFetch |Dcd Exec |Mem WB
|IFetch |Dcd Exec |[Mem |WB
| Program Flow Fetch [Dcd [Exec |Mem |WB

Single Cycle vs. Pipeline

. Cycle 1 i Cycle 2 b

Clk | _ I—

Sing,fle Cycle Implementation:
Load I Store ‘Waste

ECycIe 1§Cycle 2§Cycle 3§Cycle 4§Cyclé 5§Cycle 6§Cycle 7§Cycle 8§Cycle 9§3ycle§ 10

Clk

Pipeline Implementation:

Load Ifetchl Rng Exec IMem I Wr
Store| Ifetch I Rng Exec IMem I Wr
R-type Ifetchl Regﬂ Exec IMem I Wr

Pipelined Datapath

Divide datapath into multiple pipeline stages

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch . Fetch . ~— Memory
w| | Instr. |[g -Register| |z Py 71— Register
S " Memory B} File S 2 B pata | |8 File
Q) AT (D > || B
- - N Memory| [°

Pipelined Control

The Main Control generates the control signals during Reg/Dec
Control signals for Exec (ALUOp, ALUSTrc, ...) are used 1 cycle later
Control signals for Mem (MemWE, Mem2Regq, ...) are used 2 cycles later
Control signals for Wr (RegWE, ...) are used 3 cycles later

: . Reg/Dec ‘: 3 Exec ‘: 3 Mem ‘: : Wr
1 o o o -
ALUSrc ALUSrc
> » m
— — X =
T . [ALUOp S| ALUOp = =
S Main > m > g =
o| | oMl yemwe || MemwE 2| MemWwE S
2 »l o <4 > py)
— Q «Q ®
2 Mem2Reg |&| Mem2Reg @ | Mem2Reg i
o » @ > é“ P =
RegWE | [RegWE | | RegWE | " [RegWE

Can pipelining get us into trouble?

Yes: Pipeline Hazards
structural hazards: attempt to use the same resource two different ways at
the same time
E.g., combined washer/dryer would be a structural hazard or folder
busy doing something else (watching TV)
data hazards: attempt to use item before it is ready
E.g., one sock of pair in dryer and one in washer; can’t fold until get
sock from washer through dryer
instruction depends on result of prior instruction still in the pipeline
control hazards: attempt to make decision before condition evaluated
E.g., washing football uniforms and need to get proper detergent level;
need to see after dryer before next load in
branch instructions

Can always resolve hazards by waiting
pipeline control must detect the hazard
take action (or delay action) to resolve hazards

Pipelining the Load Instruction

The five independent functional units in the pipeline datapath are:
Instruction Memory for the Ifetch stage
Register File’'s Read ports (bus A and busB) for the Reg/Dec stage
ALU for the Exec stage
Data Memory for the Mem stage
Register File's Write port (bus W) for the Wr stage

: Cycle 1iCycle 2 Cycle 3iCycle 4 iCycle 5 iCycle 6 iCycle 7 :
Clock _

1st LDUR] Ifetch JReg/Ded Exec | Mem | wr

2nd LDUR Ifetch JReg/Ded Exec | Mem [wr

3rd LDUR] Ifetch IReg/DecI Exec I Mem I Wr

10

The Four Stages of R-type

Ifetch: Fetch the instruction from the Instruction Memory
Reg/Dec: Register Fetch and Instruction Decode

Exec: ALU operates on the two register operands

Wr: Write the ALU output back to the register file

: Cycle 1:iCycle 2 ; Cycle 3iCycle 4

R-type| Ifetch IRengecl Exec I Wr

Structural Hazard

Interaction between R-type and loads causes structural hazard on writeback

: Cycle 1:Cycle 2 ; Cycle 3:Cycle 4 ;Cycle 5 ;Cycle 6 :Cycle 7 ;Cycle 8 ;Cycle 9 ;

Clock

R-type| Ifetch IRengecI Exec I Wr

R-type | Ifetch IRengecI Exec I Wr

Load | Ifetch IRengecI Exec I Mem I Wr

R-type| Ifetch IRengecI Exec I Wr

R-type| Ifetch IRengecI Exec I Wr

12

Important Observation

Each functional unit can only be used once per instruction

Each functional unit must be used at the same stage for all instructions:
Load uses Register File’'s Write Port during its 5th stage

1 2 3 4 5
Load | Ifetch IRengecl Exec I Mem I Wr

R-type uses Register File’s Write Port during its 4th stage

1 2 3 4

Ifetch |Reg/Deq Exec | Wr
Solution: Delay R 2!

Now R-type instructions also use Reg File’s write port at Stage 5
Mem stage is a NOOP stage: nothing is being done.

1 2 3 4 5
R-type| Ifetch IReg/DecI Exec | Mem | Wr

13

Pipelining the R-type Instruction

Clock

R-type

: Cycle 1:Cycle 2 ; Cycle 3:Cycle 4 iCycle 5 (Cycle 6 :Cycle 7 iCycle 8 :Cycle 9

Ifetch IReg/DecI Exec I Mem I Wr

R-type

Ifetch IReg/DecI Exec I Mem I Wr

Load

Ifetch IReg/DecI Exec I Mem I Wr

R-type

Ifetch IReg/DecI Exec I Mem I Wr

R-type

Ifetch IReg/DecI Exec I Mem I Wr

14

The Four Stages of Store

Ifetch: Fetch the instruction from the Instruction Memory
Reg/Dec: Register Fetch and Instruction Decode

Exec: Calculate the memory address

Mem: Write the data into the Data Memory

Wr: NOOP

Compatible with Load & R-type instructions

i Cycle 1iCycle 2 | Cycle 3iCycle 4

Store | Ifetch IRengecl Exec | Mem || Wr

15

The Stages of Conditional Branch

Ifetch: Fetch the instruction from the Instruction Memory

Reg/Dec: Register Fetch and Instruction Decode, compute branch target
Exec: Test condition & update the PC

Mem: NOOP

Wr: NOOP

i Cycle 1iCycle 2 | Cycle 3iCycle 4

Beq | Ifetch IRengecI Exec || Mem || Wr

Control Hazard

Branch updates the PC at the end of the Exec stage.

Clock

 Cycle 1iCycle 2} Cycle 3Cycle 4 iCycle 5 iCycle 6 {Cycle 7 {Cycle 8 {Cycle 9 ;

R-type

Ifetch IReg/DecI Exec I Mem I Wr

CBZ Ifetch IReg/DecI Exec I Mem I Wr

load | Ifetch IReg/DecI Exec I Mem I Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

17

Accelerate Branches

When can we compute branch target address?
When can we compute the CBZ condition?

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch - Fetch - ~ Memory
v| | Instr. s :Register Py Ry ;qn—;—Register_
O™ Memory| 8 File I & 1 File
a) 7 Data | |9 _ i
D A6 (D »— 1D
- B B Memory B

18

Accelerate Branches

When can we compute branch target address?
When can we compute beq condition?

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch - Fetch - ~ Memory
v| | Instr. s :Register py Py ;qn—;Register_
o Memory ‘(‘; > File teStfé > % D -C%D - File
5 & .| JB ata | @ - -
| B "l |Memory| [
< 7
T L ||

19

Solution #3: Branch Delay Slot

Redefine branches: Instruction directly after branch always executed
Instruction after branch is the delay slot

Compiler/assembler fills the delay slot

e s SHB—HPr—H B3 ADD X1, X0, X4 ADD X1, X0, X4
CBZ X2, FOO ADD X1, X0, X4 CBz X1, FOO CBzZ X1, FOO
ADD X1, X0, X4 CBZ X1, FOO ADD X1, X2, XO ADD X31, X31, X31
SUB X2, X0, X3 ADD X1, X3, X3
No No Fon- Insert noop
wasted ted ADD X1 _ X2 _ %0 Wastes 1 CyC|e
cycles waste per branch
cycles

Assume 50% branch,
Wastes 2 cycle per branch

Compare vs. stall

20

Control Hazard 2

Branch updates the PC at the end of the Reg/Dec stage.

 Cycle 1iCycle 2} Cycle 3Cycle 4 iCycle 5 iCycle 6 {Cycle 7 {Cycle 8 {Cycle 9 ;

Clock

R-type| Ifetch IReg/DecI Exec I Mem I Wr

CBZ Ifetch IReg/DecI Exec I Mem I Wr

load | Ifetch IReg/DecI Exec I Mem I Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

R-type

Ifetch IReg/DecI Exec I Mem I Wr

: Cycle 1iCycle 2 i Cycle 3iCycle 4

Beq | Ifetch IRengecIl Exec || Mem || Wr

21

Solution #1: Stall

Delay loading next instruction, load no-op instead

: Cycle 1iCycle 2 { Cycle 3iCycle 4 iCycle 5 iCycle 6 iCycle 7 iCycle 8 iCycle 9 :
Clock |

R-type| Ifetch IRegIDecI Exec I Mem I Wr

CBz Ifetch IRengecI Exec I Mem I Wr

@ Bubble Bubble Bubble Bubble

Ifetch IRengecI Exec I Mem I Wr

R-type| Ifetch IRengecI Exec I Mem I Wr

R-type| Ifetch IRengecI Exec I Mem I Wr

CPI if all other instructions take 1 cycle, and branches are 20% of instructions?

22

Solution #2: Branch Prediction

Guess all branches not taken, squash if wrong

 Cycle 1iCycle 2} Cycle 3Cycle 4 iCycle 5 iCycle 6 {Cycle 7 {Cycle 8 {Cycle 9 ;

Clock

R-type| Ifetch IReg/DecI Exec I Mem I Wr

CBZ Ifetch IReg/DecI Exec I Mem I Wr

load | Ifetch IReg/DecI Exec I Mem I Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

CPI if 50% of branches actually not taken, and branch frequency 20%?

23

Solution #3: Branch Delay Slot

Redefine branches: Instruction directly after branch always executed
Instruction after branch is the delay slot

Compiler/assembler fills the delay slot

ADD X1, X0, X4 SUB X2, X0, X3 ADD X1, X0, X4 ADD X1, X0, X4
CBZ X2, FO0O ADD X1, X0, X4 CBZz X1, FOO CBZz X1, FOO
CBZ X1, FOO

ADD X1, X3, X3
FOO:
ADD X1, X2, X0

24

Data Hazards

Consider the following code:
ADD X0, X1, X2
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

: Cycle 1iCycle 2 Cycle 3iCycle 4 iCycle 5 iCycle 6 iCycle 7 iCycle 8 iCycle 9 :

CIocL _|

ADD | Ifetch IRegIDecI Exec I Mem I Wr

SUB Ifetch IRegIDecI Exec I Mem I Wr

AND | Ifetch IRegIDecI Exec I Mem I Wr

ORR | Ifetch IRegIDecI Exec I Mem I Wr

EOR | Ifetch IRegIDecI Exec I Mem I Wr

25

Data Hazards

Consider the following code:
ADD X0, X1, X2
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

: Cycle 1iCycle 2 Cycle 3iCycle 4 iCycle 5 iCycle 6 iCycle 7 iCycle 8 iCycle 9 :

CIocL _|

ADD | Ifetch IRegIDecI Exec I Mem

SUB [Ifetch JRe

AND [Ifetch JRe

ORR | Ifetch IRegIDecI_I': xec I Mem I Wr

EOR | Ifetch IRegIDecI Exec I Mem I Wr

26

Data Hazards on Loads

LDUR X0, [X31, 0]

SUB X3, X0, X4 — Cannot be solved — data not available when needed.
AND X5, X0, X6 — Handled by forwarding logic
ORR X7, X0, X8 — Fixed by register file bypass

EOR X9, X0, X10 — Not a problem

: Cycle 1iCycle 2 Cycle 3iCycle 4 iCycle 5 iCycle 6 iCycle 7 iCycle 8 iCycle 9 :

C|O(L

]

LDUR [Ifetch JReg/Ded Exec | Me

SuUB

We

Ifetch |Reg Exec

Me-L I Wr |

AND

Ifetch JReg/Deq Exec || Mem [Wr

r~

ORR | Ifetch IRegllkq-_F,xec I Mem I Wr

EOR

Ifetch IRegiDecl Exec | Mem | Wr

27

Design Register File Carefully

What if reads see value after write during the same cycle?
ADD X0, X1, X2
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

: Cycle 1iCycle 2 Cycle 3iCycle 4 iCycle 5 iCycle 6 iCycle 7 iCycle 8 iCycle 9 :

CIocL _|

ADD | Ifetch IRegIDecI Exec I Mem I Wr

SUB Ifetch IRegIDecI Exec I Mem I Wr

AND | Ifetch IRegIDecI Exec I Mem I Wr

ORR | Ifetch IRegIDecI Exec I Mem I Wr

EOR | Ifetch IRegIDecI Exec I Mem I Wr

28

Forwarding

Add logic to pass last two values from ALU output to ALU input(s) as needed
Forward the ALU output to later instructions
ADD X0, X1, X2
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

: Cycle 1iCycle 2 Cycle 3iCycle 4 iCycle 5 iCycle 6 iCycle 7 iCycle 8 iCycle 9 :

CIocL _|

ADD | Ifetch IRegIDecI Exec I Mem I Wr

SUB Ifetch IRegIDecI Exec I Mem I Wr

AND | Ifetch IRegIDecI Exec I Mem I Wr

ORR | Ifetch IRegIDecI Exec I Mem I Wr

EOR | Ifetch IRegIDecI Exec I Mem I Wr

29

od

Forwarding (cont.)

Requires values from last two ALU operations.
Remember destination register for operation.
Compare sources of current instruction to destinations of previous 2.

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch Fetch Memory B
.| Instr. | -Register 2 ' \ ze e Register
Memory | File 8 fo. 1 File
o o 71 Data | | (2] i
@ ., ® > ®

30

od

Forwarding (cont.)

Requires values from last two ALU operations.
Remember destination register for operation.

Compare sources of current instruction to destinations of previous 2.

IF RF EX MEM WB
Instruction Register Execute Data Writeback
Fetch Fetch Memory -
| Instr. |io :Register o x| | byt Register_
Memory [/} File O 1 pata Sl File
5 ﬂjéﬁf//// @ Memory =~ |

i p 4 _A/. T i

- .

Forwardmg Note: what if reg written twice?
R Unit » ADD X0, X1, X1

SUB X0, X3, X0

ORR X2, X0, X6 31
Write to X31? STUR?

Data Hazards on Loads

LDUR X0, [X31, 0]
SUB X3, X0, X4
AND X5, X0, X6
ORR X7, X0, X8
EOR X9, X0, X10

: Cycle 1iCycle 2 Cycle 3iCycle 4 iCycle 5 iCycle 6 iCycle 7 iCycle 8 iCycle 9 :

C|O(L

LDUR | Ifetch IRegIDecI Exec I Mem I Wr

SUB Ifetch IRegIDecI Exec I Mem I Wr

AND | Ifetch IRegIDecI Exec I Mem I Wr

ORR | Ifetch IRegIDecI Exec I Mem I Wr

EOR

]

Ifetch IRegIDecI Exec I Mem I Wr

32

Data Hazards on Loads (cont.)

Solution:
Use same forwarding hardware & register file for hazards 2+ cycles later
Force compiler to not allow register reads within a cycle of load
Fill delay slot, or insert no-op.

33

