Computer “Performance”

Readings: 1.6-1.8
BIPS (Billion Instructions Per Second) vs. GHz (Giga Cycles Per Second)
Throughput (jobs/seconds) vs. Latency (time to complete a job)

Measuring “best” in a computer

Performance Example: Homebuilders

Builder Time per Houses Per House Dollars Per
House Month Options House
Self-build 24 months 1124 Infinite $200,000
Contractor 3 months 1 100 $400,000
Prefab 6 months 1,000 1 $250,000

Which is the “best” home builder?

Homeowner on a budget?

Rebuilding Haiti?

Moving to wilds of Alaska?

Which is the “speediest” builder?
Latency: how fast is one house built?

Throughput: how long will it take to build a large number of houses?

10,000,000

1,000,000

100,000

10,000

1,000

100

10

0

U3 Ore =
Intel CPU Trends A
(sources: Intel, Wikipedia, K. Olukotun) .

i ~ ® Transistors (000) .
1 ® Clock Speed (MHz)
‘ X ® A Power (W)
@ Perf/Clock (ILP)
| |
1970 1975 1980 1985 1990 1995 2000 2005 2010

Computer Performance

Primary goal: execution time (time from program start to program completion)
1

ExecutionTime
To compare machines, we say “X is n times faster than Y”

Performance, ExecutionTime,

Performance

Performance =

n

y ExecutionTime,

Example: Machine Orange and Grape run a program
Orange takes 5 seconds, Grape takes 10 seconds

Orange is times faster than Grape

Execution Time

Elapsed Time
counts everything (disk and memory accesses, I/O , etc.)
a useful number, but often not good for comparison purposes

CPU time
doesn't count I/O or time spent running other programs
can be broken up into system time, and user time

Example: Unix “time” command

linuxl5.ee.washington.edu> time javac CircultViewer.java
3.370u 0.570s 0:12.44 31.6%

Our focus: user CPU time
time spent executing the lines of code that are "in" our program
But elapsed time is hugely important and what matters in the “real world”

CPU Time

CPU executiontime CPU clock cycles :
= * Clock period
for a program for a program
CPU execution time _ CPU clock cycles 1
for a program for a program Clock rate

Application example:

A program takes 10 seconds on computer Orange, with a 400MHz clock.
Our design team is developing a machine Grape with a much higher clock
rate, but it will require 1.2 times as many clock cycles. If we want to be able
to run the program in 6 second, how fast must the clock rate be?

CPI

How do the # of instructions in a program relate to the execution time?

CPU clock cycles Instructions " Average Clock :
= Cycles per Instruction
for a program for a program (CPI)
CPU execution time _ Instructions N N 1
= CPI
for a program for a program Clock rate

CPI Example

Suppose we have two implementations of the same instruction set (ISA).

For some program

Machine A has a clock cycle time of 10 ns. and a CPI of 2.0
Machine B has a clock cycle time of 20 ns. and a CPl of 1.2

What machine is faster for this program, and by how much?

Computing CPI

Different types of instructions can take very different amounts of cycles
Memory accesses, integer math, floating point, control flow

CPI=Y (Cycleslype*Frequencylype;

types
Instruction Type Type Cycles Type Frequency Cycles * Freq
ALU 1 50%
Load 5 20%
Store 3 10%
Branch 2 20%

CPI:

CPI & Processor Tradeofts

Instruction Type Type Cycles Type Frequency
ALU 1 50%
Load 5 20%
Store 3 10%
Branch 2 20%

How much faster would the machine be if:
1. A data cache reduced the average load time to 2 cycles?

2. Branch prediction shaved a cycle off the branch time?

3. Two ALU instructions could be executed at once?

10

Warning 1: Amdahl’s Law

The impact of a performance improvement is limited by what is NOT improved:

Execution time _ Execution time Execution time 1

after improvement of unaffected affected Amount of improvement

Example: Assume a program runs in 100 seconds on a machine, with multiply
responsible for 80 seconds of this time. How much do we have to speed up
multiply to make the program run 4 times faster?

5 times faster?

11

Warning 2: BIPs, GHz = Performance

Higher MHz (clock rate) doesn’t always mean better CPU
Orange computer: 1000 MHz, CPI: 2.5, 1 billion instruction program

Grape computer: 500MHz, CPI: 1.1, 1 billion instruction program

Higher MIPs (million instructions per second) doesn’t always mean better CPU
1 GHz machine, with two different compilers
Compiler A on program X: 10 Billion ALU, 1 Billion Load
Compiler B on program X: 5 Billion ALU, 1Billion Load

Execution Time: A B Instruction Type Type Cycles
ALU 1
Load 5
Store 3
MIPS:A B Branch 2

12

Processor Performance Summary

Machine performance:

CPU execution time Instructions |
= * CPI *
for a program for a program Clock rate

Better performance:

number of instructions to implement computations

CPI

Clock rate

Improving performance must balance each constraint
Example: RISC vs. CISC

13

CPI = Cycles per instruction
varies by type of instruction and dynamic processor state
useful for rough performance estimation. e.g. “Loads take X" ADDs Y

IPC = Instructions per cycle
In some ways IPC =1/ CPI but not really
we use |IPC in architecture to measure instruction parallelism

Most important thing about measuring performance:

Speedup =1 /((1 - fraction) + fraction/P)

14

