 Provides clock

* Provides test vectors/checks results
— test vectors and results are precomputed
— usually read vectors from file

* Models system environment
— Complex program that simulates external environment

e Test fixture can all the language features

— initial, delays, read/write files, etc.

Simulation

Circuit Description
(Synthesizeable)

Test Fixture
(Specification)

A A A A
VYVYVYYVY

ELSEVIER
|

Verilog programs used to drive the simulation
Much easier than drawing waveforms

Test fixtures are usually non-synthesizeable
Anything goes! Really 1s like writing a C program
Not really Verilog!

Self-checking text fixtures are required for regression testing
You can write an arbitrary program in Verilog

* Like always blocks
— execute once at the very beginning of simulation
— not synthesizeable

e use reset instead

ELSEVIER
S

module clockGenerator (CLK);
parameter period = 10;
parameter howlong = 100;
output reg CLK;

initial begin
CLK = 0;
(period/2) ;
repeat (howlong) begin

CLK = 1;
(period-period/2) ;
CLK = 0;
(period/2) ;
end
$finish; Finishes the simulation
end “ Cannot be restarted
endmodule

£ 4%\ .
ELSEVIER

module clock gen (masterclk) use define to make constants

/easier to find and change
10;

"define PERIOD

output masterclk;
req masterclk;

initial masterclk = 0;

always begin use of initial and always
PERIOD/2 blocks
masterclk = ~masterclk;

end

endmodule

module stimulus

(output a, b, c); module full addrl (A, B, Cin, S, Cout);
parameter delay = 10; input A, B, Cin;
reg [2:0] ent; output S, Cout;
initial begin assign {Cout, S} = A + B + Cin;
cnt = 0; endmodule

repeat (8) begin
#delay cnt=cnt+l;
end
#delay $finish;
end

assign {c, a, b} = cnt;

endmodule
module driver; // Structural Verilog connects test-fixture to full adder
wire a, b, cin, sum, cout;

stimulus stim (a, b, cin);

full addrl fal (a, b, cin, sum, cout); $mon|tor prlnts when any

printed signal changes
initial begin
$monitor ("@ time=%0d cin=%b, a=%b, b=%b, cout=%d, sum=%d",
$time, cin, a, b, cout, sum);

end . . - -
endmodule $time is simulation time

ELSEVIER

module what tf
(output [8:0] data,
input [3:0] count);

integer i;
assign data = i;
initial begin
for (1 = 0; 1 <= 511; 1 =i + 1) begin
#10 Sdisplay("Data = %$x, Count = %d", data, count);

end <

$Sstop; $display is like printf
end _
$stop just pauses the
endmodule simulation — can be
restarted

ELSEVIER
|

module countLeadingZeros_tf (
output reg [15:0] in,
input [4:0] out);
integer i;
initial begin
in = 'h8000;
for (1 = 0; i <=16; i =i + 1) begin
#10 if (out '== i) begin
Sdisplay ("***ERROR***") ;
Sstop;
end
in = (in >> 1);
end
$Sstop;
end
endmodule

XY 5%
) 1 v
& i R
5 :
b
" W
A

ELSEVIER

module testData(clk, reset, data);
input clk;
output reset, data;
reg [1:0] testVector [100:0];
reg reset, data;
integer count;

initial begin
$readmemb ("data.dat", testVector);
count = 0;
{ reset, data } = testVector[0];
end

always @ (posedge clk) begin
count <= count + 1;
#1 { reset, data } <= testVector[count];
end
endmodule

§ # :
ELSEVIER
|

module convert_tf
(input [7:0] R, G, B,
output reg [7:0] Y, CR, CB);
reg [47:0] mem [0:1023];
reg [7:0] Rs, Gs, Bs;
integer i;
integer errors;
function absdiff;
input a, b;
begin
if (a > b) absdiff = a - b;
else absdiff = b - a;
end
endfunction
initial begin
$readmemh ("data.txt", mem);
errors = 0;
for (i=0; i < 1024; i = i + 1) begin
{ ¥, CR, CB, Rs, Gs, Bs }
#10
if (absdiff(R, Rs)>1 || absdiff(G, Gs)>1 || absdiff (B, Bs)>1l) begin
$display ("Error: (YCrCb)=%d,%d,%d (R,G,B)=%d,%d,%d should be %d,%d,%d", ¥,CR,CB,R,G,B,Rs,Gs,Bs);
errors = errors + 1;

mem[i];

end
end
$display ("End of Simulation: %d errors found", errors);
$stop;
end // initial begin
endmodule // convert tf

ELSEVIER

 Interpreted vs. compiled simulation

— performance of the simulation
* Level of simulation

— accuracy of the model

» Relationship to synthesis

— can all that can be simulated be synthesized?

 Interpreted

— data structures constructed from input file

— simulator walks data structures and decided when
something occurs

— basic algorithm:

 take an event from queue, evaluate all modules sensitive to that
event, place new events on queue, repeat

* Compiled
— 1nput file 1s translated into code that 1s compiled/linked
with kernel

— basic algorithm:

e same as above

 except that now functions associated with elements are simply
executed and directly place events on queue

« overhead of compilation must be amortized over total
simulation time and its harder to make changes — need
dynamic linking

ELS

,A :'3)'

EVIER

 FElectrical

— solve differential equations for all devices simultaneously to determine
precise analog shape of waveforms

 Transistor

— model individual transistors as switches - this can be close to electrical
simulation if restricted to digital circuits

 (ate

— use abstraction of Boolean algebra to view gates as black-boxes if only
interested in digital values and delay

* Cycle or register-transfer

— determine correct values only at clock edges, ignore gate delays if
interested only in proper logical behavior of detailed implementation

* Functional (or behavioral) level

— no interest in internal details of circuit implementation (just a program)

ELSEVIER
|

* Event queue
— changes in signal values are "events" placed on the queue

— queue 1s a list of changes to propagate
— priority queue of pending events based on time of occurrence

— multiple events on same signal can be on queue
« Time
— advanced whenever an event 1s taken off the queue
 advance to time of event
— parallel activities are implicitly interleaved

— what do we do about events with zero delay?

ELSEVIER
|

All computations happen in zero time unless there are
explicit delays or waits in the code

— #delay - blocks execution until that much time has passed
» event placed on queue to wake up block at that time

— (@ or wait - waits for an event, e.g., @(posedge clk) and wait
(x==0)

 nothing happens until that event is taken off the queue

When an event 1s removed from the queue, all the blocks
sensitive to it are evaluated in parallel and advance to their
next blocking point (delay/wait)

Time advances as long as there are events to process
— 1infinite loops are easy to write
— use explicit $finish

— use specified number of clock periods by
H S F \ [ER

