
Test Fixtures

•  Provides clock
•  Provides test vectors/checks results

–  test vectors and results are precomputed
–  usually read vectors from file

•  Models system environment
–  Complex program that simulates external environment

•  Test fixture can all the language features
–  initial, delays, read/write files, etc.

Simulation

Test Fixture
(Specification)

Circuit Description
(Synthesizeable)

Test Fixtures

Verilog programs used to drive the simulation
Much easier than drawing waveforms

Test fixtures are usually non-synthesizeable
Anything goes! Really is like writing a C program
Not really Verilog!

Self-checking text fixtures are required for regression testing
You can write an arbitrary program in Verilog

Initial Blocks

•  Like always blocks
–  execute once at the very beginning of simulation
–  not synthesizeable

•  use reset instead

Verilog Clock Generator

module clockGenerator (CLK);
 parameter period = 10;
 parameter howlong = 100;
 output reg CLK;

 initial begin
 CLK = 0;
 #(period/2);
 repeat (howlong) begin
 CLK = 1;
 #(period-period/2);
 CLK = 0;
 #(period/2);
 end
 $finish;
 end

endmodule

Finishes the simulation
Cannot be restarted

Another Clock Generator

module clock_gen (masterclk);

 `define PERIOD = 10;

 output masterclk;
 reg masterclk;

 initial masterclk = 0;

 always begin
 #`PERIOD/2
 masterclk = ~masterclk;
 end

endmodule

use `define to make constants
easier to find and change

use of initial and always
blocks

Simple Test Fixture

module full_addr1 (A, B, Cin, S, Cout);
 input A, B, Cin;
 output S, Cout;

 assign {Cout, S} = A + B + Cin;
endmodule

module stimulus
 (output a, b, c);
 parameter delay = 10;
 reg [2:0] cnt;

 initial begin
 cnt = 0;
 repeat (8) begin
 #delay cnt=cnt+1;
 end
 #delay $finish;
 end

 assign {c, a, b} = cnt;
endmodule

module driver; // Structural Verilog connects test-fixture to full adder
 wire a, b, cin, sum, cout;
 stimulus stim (a, b, cin);
 full_addr1 fa1 (a, b, cin, sum, cout);

 initial begin
 $monitor ("@ time=%0d cin=%b, a=%b, b=%b, cout=%d, sum=%d",
 $time, cin, a, b, cout, sum);
 end
endmodule

$monitor prints when any
printed signal changes

$time is simulation time

Text Fixture Example

module what_tf
 (output [8:0] data,
 input [3:0] count);

 integer i;
 assign data = i;
 initial begin
 for (i = 0; i <= 511; i = i + 1) begin
 #10 $display("Data = %x, Count = %d", data, count);

 end
 $stop;
 end
endmodule

$display is like printf

$stop just pauses the
simulation – can be
restarted

Self-Checking Text Fixture

module countLeadingZeros_tf(
 output reg [15:0] in,
 input [4:0] out);
 integer i;
 initial begin
 in = 'h8000;
 for (i = 0; i <= 16; i = i + 1) begin
 #10 if (out !== i) begin
 $display("***ERROR***");

 $stop;
 end

 in = (in >> 1);
 end

 $stop;
 end
endmodule

module testData(clk, reset, data);
 input clk;
 output reset, data;
 reg [1:0] testVector [100:0];
 reg reset, data;
 integer count;

 initial begin
 $readmemb("data.dat", testVector);
 count = 0;
 { reset, data } = testVector[0];
 end

 always @(posedge clk) begin
 count <= count + 1;
 #1 { reset, data } <= testVector[count];
 end
endmodule

Test Vectors

Homework Text Fixture #4

module convert_tf
 (input [7:0] R, G, B,
 output reg [7:0] Y, CR, CB);
 reg [47:0] mem [0:1023];
 reg [7:0] Rs, Gs, Bs;
 integer i;
 integer errors;
 function absdiff;
 input a, b;
 begin

 if (a > b) absdiff = a - b;
 else absdiff = b - a;

 end
 endfunction
 initial begin
 $readmemh("data.txt", mem);
 errors = 0;
 for (i=0; i < 1024; i = i + 1) begin

 { Y, CR, CB, Rs, Gs, Bs } = mem[i];
 #10
 if (absdiff(R, Rs)>1 || absdiff(G, Gs)>1 || absdiff(B, Bs)>1) begin
 $display("Error: (YCrCb)=%d,%d,%d (R,G,B)=%d,%d,%d should be %d,%d,%d", Y,CR,CB,R,G,B,Rs,Gs,Bs);
 errors = errors + 1;
 end

 end
 $display("End of Simulation: %d errors found", errors);
 $stop;
 end // initial begin
endmodule // convert_tf

Verilog Simulation

•  Interpreted vs. compiled simulation
–  performance of the simulation

•  Level of simulation
–  accuracy of the model

•  Relationship to synthesis
–  can all that can be simulated be synthesized?

Intepreted vs. Compiled Simulation

•  Interpreted
–  data structures constructed from input file
–  simulator walks data structures and decided when

something occurs
–  basic algorithm:

•  take an event from queue, evaluate all modules sensitive to that
event, place new events on queue, repeat

Intepreted vs. Compiled Simulation

•  Compiled
–  input file is translated into code that is compiled/linked

with kernel
–  basic algorithm:

•  same as above
•  except that now functions associated with elements are simply

executed and directly place events on queue
•  overhead of compilation must be amortized over total

simulation time and its harder to make changes – need
dynamic linking

Simulation Level

•  Electrical
–  solve differential equations for all devices simultaneously to determine

precise analog shape of waveforms
•  Transistor

–  model individual transistors as switches - this can be close to electrical
simulation if restricted to digital circuits

•  Gate
–  use abstraction of Boolean algebra to view gates as black-boxes if only

interested in digital values and delay
•  Cycle or register-transfer

–  determine correct values only at clock edges, ignore gate delays if
interested only in proper logical behavior of detailed implementation

•  Functional (or behavioral) level
–  no interest in internal details of circuit implementation (just a program)

Simulation Time and Event Queues

•  Event queue
–  changes in signal values are "events" placed on the queue
–  queue is a list of changes to propagate
–  priority queue of pending events based on time of occurrence
–  multiple events on same signal can be on queue

•  Time
–  advanced whenever an event is taken off the queue

•  advance to time of event
–  parallel activities are implicitly interleaved
–  what do we do about events with zero delay?

Verilog Time

•  All computations happen in zero time unless there are
explicit delays or waits in the code
–  #delay - blocks execution until that much time has passed

•  event placed on queue to wake up block at that time
–  @ or wait - waits for an event, e.g., @(posedge clk) and wait

(x==0)
•  nothing happens until that event is taken off the queue

•  When an event is removed from the queue, all the blocks
sensitive to it are evaluated in parallel and advance to their
next blocking point (delay/wait)

•  Time advances as long as there are events to process
–  infinite loops are easy to write
–  use explicit $finish
–  use specified number of clock periods

