
Copyright © 2007 Elsevier 4-<1>

Sequential Logic

•  Verilog uses certain idioms to describe latches, flip-flops and
FSMs

•  Other coding styles may simulate correctly but produce
incorrect hardware

Copyright © 2007 Elsevier 4-<2>

D Flip-Flop

module flop(input clk,
 input [3:0] d,
 output reg [3:0] q);

 always @ (posedge clk)
 q <= d; // pronounced “q gets d”

endmodule

Any signal assigned in an always statement must be declared reg. In
this case q is declared as reg
Beware: A variable declared reg is not necessarily a registered output.

 We will show examples of this later.
Note the use of the <= assignment operator

Copyright © 2007 Elsevier 4-<3>

module flopr(input clk,
 input reset,
 input [3:0] d,
 output reg [3:0] q);

 // synchronous reset
 always @ (posedge clk)
 if (reset) q <= 4'b0;
 else q <= d;

endmodule

Resettable D Flip-Flop

Copyright © 2007 Elsevier 4-<4>

module flopr(input clk,
 input reset,
 input [3:0] d,
 output reg [3:0] q);

 // asynchronous reset
 always @ (posedge clk, posedge reset)
 if (reset) q <= 4'b0;
 else q <= d;

endmodule

Resettable D Flip-Flop

Copyright © 2007 Elsevier 4-<5>

module flopren(input clk,
 input reset,
 input en,
 input [3:0] d,
 output reg [3:0] q);

 // asynchronous reset and enable
 always @ (posedge clk, posedge reset)
 if (reset) q <= 4'b0;
 else if (en) q <= d;

endmodule

D Flip-Flop with Enable

Copyright © 2007 Elsevier 4-<6>

module latch(input clk,
 input [3:0] d,
 output reg [3:0] q);

 always @ (clk, d)
 if (clk) q <= d;

endmodule

Warning: We won’t use latches in this course, but you might write code that
inadvertently implies a latch. So if your synthesized hardware has latches in it,
this indicates an error.

Latch

module reg8
 (input reset,
 input CLK,
 input [7:0] D,
 output reg [7:0] Q);

 always @(posedge CLK)
 if (reset)
 Q <= 0;
 else
 Q <= D;

endmodule // reg8

8-bit Register with Synchronous Reset

module regN
 #(parameter N=8)
 (input reset,
 input CLK,
 input [N-1:0] D,
 output reg [N-1:0] Q);

 always @(posedge CLK or posedge reset)
 if (reset)
 Q <= 0;
 else if (CLK == 1)
 Q <= D;

endmodule // regN

N-bit Register with Asynchronous Reset

Shift Register Example

// 8-bit register can be cleared, loaded, shifted left
// Retains value if no control signal is asserted

module shiftReg
 (input CLK,
 input clr, // clear register
 input shift, // shift
 input ld, // load register from Din
 input [7:0] Din, // Data input for load
 input SI, // Input bit to shift in
 output reg [7:0] Dout);

 always @(posedge CLK) begin
 if (clr) Dout <= 0;
 else if (ld) Dout <= Din;
 else if (shift) Dout <= { Dout[6:0], SI };
 end

endmodule // shiftReg

Counter Example

•  Simple components with a register and extra
computation
–  Customized interface and behavior, e.g.

•  counters
•  shift registers

// 8-bit counter with clear and count enable controls
module count8
 (input CLK,
 input clr, // clear counter
 input cntEn,// enable count
 output reg [7:0] Dout);// counter value

 always @(posedge CLK)
 if (clr) Dout <= 0;
 else if (cntEn) Dout <= Dout + 1;

endmodule

Copyright © 2007 Elsevier 4-<11>

Rules for Signal Assignment

•  Use always @(posedge clk) and nonblocking assignments (<=) to
model synchronous sequential logic

 always @ (posedge clk)

 q <= d; // nonblocking

•  Use continuous assignments (assign …) to model simple combinational
logic.

 assign y = a & b;

•  Use always @ (*) and blocking assignments (=) to model more
complicated combinational logic if, case, for, etc. statements are useful

•  Do not make assignments to the same signal in more than one always
statement or continuous assignment statement.
•  Equivalent to driving one wire with multiple outputs
•  Assignment to Z is the only exception

Copyright © 2007 Elsevier 4-<12>

Blocking vs. Nonblocking Assignments

•  <= is a “nonblocking assignment”
•  Occurs simultaneously with others

•  = is a “blocking assignment”
–  Occurs in the order it appears in the file

// Good synchronizer using !
// nonblocking assignments!
module syncgood!
 (input clk,!
 input d,!
 output reg q);!
 reg n1;!
 always @(posedge clk)!
 begin!
 n1 <= d; // nonblocking!
 q <= n1; // nonblocking!
 end!
endmodule!

// Bad synchronizer using !
// blocking assignments!
module syncbad!
 (input clk,!
 input d,!
 output reg q);!
 reg n1;!
 always @(posedge clk)!
 begin!
 n1 = d; // blocking!
 q = n1; // blocking!
 end!
endmodule!

Blocking and Non-Blocking
Assignments

•  Blocking assignments (Q = A)
–  variable is assigned immediately before continuing to next statement
–  new variable value is used by subsequent statements

•  Non-blocking assignments (Q <= A)
–  variable is assigned only after all statements already scheduled

are executed
•  value to be assigned is computed here but saved for later

–  usual use: register assignment
•  registers simultaneously take their new values

after the clock tick

•  Example: swap

always @(posedge CLK)
 begin
 temp = B;
 B = A;
 A = temp;
 end

always @(posedge CLK)
 begin
 A <= B;
 B <= A;
 end

Swap (continued)

•  The real problem is parallel blocks
–  one of the blocks is executed first
–  previous value of variable is lost

•  Use delayed assignment to fix this
–  both blocks are scheduled by posedge CLK

always @(posedge CLK)
 begin
 A = B;
 end

always @(posedge CLK)
 begin
 B = A;
 end

always @(posedge CLK)
 begin
 A <= B;
 end

always @(posedge CLK)
 begin
 B <= A;
 end

Non-Blocking Assignment

•  Non-blocking assignment is also known as an RTL assignment
–  if used in an always block triggered by a clock edge
–  mimic register-transfer-level semantics – all flip-flops change together

•  My rule: ALWAYS use <= in sequential (posedge clk) blocks

// this implements 3 parallel flip-flops
always @(posedge clk)
 begin
 B = A;
 C = B;
 D = C;
 end

// this implements a shift register
always @(posedge clk)
 begin
 B <= A;
 C <= B;
 D <= C;
 end

// this implements a shift register
always @(posedge clk)
 begin
 {D, C, B} = {C, B, A};
 end

Finite State Machines

•  Recall FSM model

•  Recommended FSM implementation style
–  Implement combinational logic using a one always

block
–  Implement an explicit state register using a second

always block

inputs
Moore outputs

Mealy outputs

next state

current state

combinational
logic

Verilog FSM - Reduce 1s example

•  Change the first 1 to 0 in each string of 1’s
–  Example Moore machine implemenation

module reduce
 (input clk, reset, in,
 output reg out);

// State assignment
 localparam ZERO = 0, ONE1 = 1, TWO1s = 2;
 reg [1:0] state, next_state; // state register

// Implement the state register
 always @(posedge clk)
 if (reset) state <= ZERO;
 else state <= next_state;

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

 always @(*) begin
 out = 0; // defaults
 next_state = state;

 case (state)
 ZERO: begin // last input was a zero

 if (in) next_state = ONE1;
 end

 ONE1: begin // we've seen one 1
 if (in) next_state = TWO1S;
 else next_state = ZERO;

 end

 TWO1S: begin // we've seen at least 2 ones
 out = 1;
 if (~in) next_state = ZERO;
 end
 // Don’t need case default because of default assignments
 endcase
 end
endmodule

Moore Verilog FSM (cont’d)

module reduce
 (input clk, reset, in,
 output reg out);

// State register
 localparam ZERO = 0, ONE = 1;
 reg state, next_state; // state register
 always @(posedge clk)
 if (reset) state <= ZERO;
 else state <= next_state;

 always @(*)
 out = 0;
 next_state = state;
 case (state)
 ZERO: // last input was a zero
 if (in) next_state = ONE;
 ONE: // we've seen one 1
 if (in) begin
 out = 1;
 end else begin

 out = 0;
 next_state = ZERO;
 end

 endcase
endmodule

Mealy Verilog FSM for Reduce-1s
example

1/0 0/0

0/0

1/1

zero
[0]

one1
[0]

Restricted FSM Implementation Style

•  Mealy machine requires two always blocks
–  register needs posedge CLK block
–  input to output needs combinational block

•  Moore machine can be done with one always
block
–  e.g. simple counter
–  Not a good idea for general FSMs

•  Can be very confusing (see example)

•  Moore outputs
–  Share with state register, use suitable state encoding

