« Verilog uses certain 1dioms to describe latches, flip-flops and

FSMs

* Other coding styles may simulate correctly but produce
incorrect hardware

Copyright © 2007 Elsevier 4-<1> r‘ »
ELSEVIER

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)

this case g is declared as reg

We will show examples of this later.
Note the use of the <= assignment operator

Copyright © 2007 Elsevier

q <= d; // pronounced “gq gets d”
endmodule i e 0]
d[3:0] = D[3:0] Q[3:0] peemm—t q[3:0] =
q[3:0]

Any signal assigned in an always statement must be declared reg. In

Beware: A variable declared reg is not necessarily a registered output.

4-<2>

ELS

X 2
P PN
& a2
B Dl

(7
) o
w i ')’

£

EVIER

module flopr (input clk,
input reset,
input [3:0] d,

output reg [3:0] q);

// synchronous reset

always @ (posedge clk)
if (reset) g <= 4'b0;

else q <= d;
endmodule
clk -
: 3.0 0
rese =

>

3[3:01 Q30 maRLEA 30—

Copyright © 2007 Elsevier

q[3:0]

4-<3>

o A
= T
i A%
O Dl

‘r
) o
w i ')’

A ._“ -
ELSEVIER

module flopr (input clk,
input reset,
input [3:0] d,

output reg [3:0] q);

// asynchronous reset

always (@ (posedge clk, posedge reset)

if (reset) g <= 4'b0;
else q <= d;

endmodule

R0 B9 B0 1130 0[30] (Bl

R

Ireset -

Copyright © 2007 Elsevier

q[3:0]

52 %i':‘i
.;') 0 2‘
4-<4> . 'ﬁf

Lol
ELSEVIER

module flopren (input
input
input
input

output reg

clk,
reset,

// asynchronous reset and enable
always @ (posedge clk, posedge reset)

if (reset)
else 1f (en)

endmodule

|clk
| d[3:0]
|en

| reset

Copyright © 2007 Elsevier

qg <= 4'b0;
q <= d;
[2:0] g | 5o [20)
e D[3:0] Q[3:0] il [3:0]
E
R
|
q[3:0]

4-<5>

Lol
ELSEVIER

module latch (input
input
output reg

always @ (clk, d)
if (clk) g <= d;

endmodule

d[3:0

this indicates an error.

Copyright © 2007 Elsevier

Jat
3.0 _ 0l [3:
27 Q3:0] IO

qf3:0]

Warning: We won’t use latches in this course, but you might write code that
inadvertently implies a latch. So if your synthesized hardware has latches in it,

- Sy
x Rk
o %
Gt ki
‘r
B A
w L ')’

A ._“ -
ELSEVIER

module reg8
(input reset,
input CLK,
input [7:0] D,
output reg [7:0] Q)

always @ (posedge CLK)
if (reset)

Q <= 0;

else

Q <= D;
endmodule // reg8

ELSEVIER
|

module regN
(parameter N=8)
(input reset,
input CLK,
input [N-1:0] D,
output reg [N-1:0] Q)

always Q@ (posedge CLK or posedge reset)
if (reset)

Q <= 0;
else if (CLK == 1)
Q <= D;
endmodule // regN

ELSEVIER
-

// 8-bit register can be cleared, loaded, shifted left
// Retains value if no control signal is asserted

module shiftReg
(input CLK,

input clr, // clear register

input shift, // shift

input 1d, // load register from Din
input [7:0] Din, // Data input for load
input SI, // Input bit to shift in

output reg [7:0] Dout);

always @ (posedge CLK) begin

if (clr) Dout <= 0;
else if (1d) Dout <= Din;
else if (shift) Dout <= { Dout[6:0], SI };
end
endmodule // shiftReg

ELSEVIER
|

* Simple components with a register and extra
computation

— Customized interface and behavior, e.g.
* counters

« shift registers

// 8-bit counter with clear and count enable controls
module count8

(input CLK,
input clr, // clear counter
input cntEn,// enable count

output reg [7:0] Dout);// counter value

always @ (posedge CLK)

if (clr) Dout <= 0;
else if (cntEn) Dout <= Dout + 1;
endmodule

e X

ELSEVIER

Copyright © 2007 Elsevier 4-<11>

Use always @ (posedge clk) and nonblocking assignments (<=) to
model synchronous sequential logic
always @ (posedge clk)

g <= d; // nonblocking

Use continuous assignments (assign ...) to model simple combinational
logic.

assign y = a & b;

Use always @ (*) and blocking assignments (=) to model more
complicated combinational logic if, case, for, etc. statements are useful

Do not make assignments to the same signal in more than one always
statement or continuous assignment statement.

* Equivalent to driving one wire with multiple outputs
« Assignment to Z 1s the only exception

ELSEVIER

¢ <=1s a “nonblocking assignment”

* Occurs simultaneously with others

* =1sa “blocking assignment”

— Occurs 1n the order it appears in the file

// Good synchronizer using
// nonblocking assignments
module syncgood

(input clk,
input d,

output reg q);

reg nl;

always @ (posedge clk)
begin

nl <= d; // nonblocking
g <= nl; // nonblocking

end
—||‘>

endmodule
clk
LE\JS D Q D Q

Copyright © 2007 Elsevier

// Bad synchronizer using
// blocking assignments
module syncbad

(input clk,
input d,
output reg q);
reg nl;
always @(posedge clk)
begin
nl d; // blocking

q nl; // blocking
end
endmodule
lclk == >
L e (N B

* Blocking assignments (Q =A)

— variable is assigned immediately before continuing to next statement
— new variable value is used by subsequent statements

* Non-blocking assignments (Q <= A)

— variable 1s assigned only after all statements already scheduled
are executed
 value to be assigned is computed here but saved for later
— usual use: register assignment
 registers simultaneously take their new values
after the clock tick

« Example: swap

always Q@ (posedge CLK) always @ (posedge CLK)

begin begin
temp = B; A <= B:
B =4 B <= A;
A = temp; end

end

* The real problem 1s parallel blocks
— one of the blocks is executed first

— previous value of variable is lost

always @ (posedge CLK) always @ (posedge CLK)
begin begin
A = B; B =A4A;
end end

« Use delayed assignment to fix this
— both blocks are scheduled by posedge CLK

always @ (posedge CLK) always @ (posedge CLK)
begin begin
A <= B; B <= A;
end end

ELSEVIER
-

* Non-blocking assignment is also known as an RTL assignment

— 1f used in an always block triggered by a clock edge
— mimic register-transfer-level semantics — all flip-flops change together

« My rule: ALWAYS use <= in sequential (posedge clk) blocks

// this implements 3 parallel flip-flops
always @ (posedge clk)
begin
B =A; // this implements a shift register
C=B58; always @ (posedge clk)
D =2¢C; begin
end {D, C, B} = {C, B, A};
end

// this implements a shift register
always @ (posedge clk)
begin
B <= A4;
C <= B;
D <= C;
end

 Recall FSM model

Mealy outputs

_ mext state Moore outputs
inputs __\ o[combinational L g

\ AN

—\ logic

current state

 Recommended FSM 1mplementation style

— Implement combinational logic using a one always
block

— Implement an explicit state register using a second
always block

* Change the first 1 to 0 in each string of 1’s

— Example Moore machine implemenation

module reduce
(input clk, reset, in,
output reg out);

// State assignment
localparam ZERO = 0, ONE1l = 1, TWOls = 2;
reg [1:0] state, next state; // state register

// Implement the state register
always @ (posedge clk)
if (reset) state <= ZERO;
else state <= next_state;

ELSEVIER

always @(*) begin
out = 0; // defaults
next state =

= = state;
case (state)

ZERO: begin

// last input was a zero
if (in) next_state

= ONE1l;
end

ONEl: begin

// we've seen one 1
if (in) next_state = TWOlS;
else

next_state = ZERO;
end

TWO1lS: begin

// we've seen at least 2 ones
out = 1;

if (~in) next state

= ZERO;
end
// Don’t need case default because of default assignments
endcase
end

endmodule

§ 4%\ :
ELSEVIER
|

module reduce
(input clk, reset, in,
output reg out);

// State register
localparam ZERO = 0, ONE = 1;
reg state, next state; // state register
always @ (posedge clk)
if (reset) state <= ZERO;
else state <= next state;

always @(*)
out = 0;
next state = state;
case (state)
ZERO: // last input was a zero
if (in) next_state = ONE;
ONE: // we've seen one 1
if (in) begin
out = 1;
end else begin
out = 0;
next state
end
endcase
endmodule

ZERO;

ELSEVIER
...

e Mealy machine requires two always blocks

— register needs posedge CLK block
— 1nput to output needs combinational block

* Moore machine can be done with one always
block

— e.g. simple counter
— Not a good 1dea for general FSMs
« Can be very confusing (see example)
* Moore outputs

— Share with state register, use suitable state encoding

ELSEVIER

